tf.contrib.distributions.QuantizedDistribution
Distribution representing the quantization Y = ceiling(X)
.
Inherits From: Distribution
tf.contrib.distributions.QuantizedDistribution( distribution, low=None, high=None, validate_args=False, name='QuantizedDistribution' )
Definition in Terms of Sampling
1. Draw X 2. Set Y <-- ceiling(X) 3. If Y < low, reset Y <-- low 4. If Y > high, reset Y <-- high 5. Return Y
Definition in Terms of the Probability Mass Function
Given scalar random variable X
, we define a discrete random variable Y
supported on the integers as follows:
P[Y = j] := P[X <= low], if j == low, := P[X > high - 1], j == high, := 0, if j < low or j > high, := P[j - 1 < X <= j], all other j.
Conceptually, without cutoffs, the quantization process partitions the real line R
into half open intervals, and identifies an integer j
with the right endpoints:
R = ... (-2, -1](-1, 0](0, 1](1, 2](2, 3](3, 4] ... j = ... -1 0 1 2 3 4 ...
P[Y = j]
is the mass of X
within the jth
interval. If low = 0
, and high = 2
, then the intervals are redrawn and j
is re-assigned:
R = (-infty, 0](0, 1](1, infty) j = 0 1 2
P[Y = j]
is still the mass of X
within the jth
interval.
Examples
We illustrate a mixture of discretized logistic distributions [(Salimans et al., 2017)][1]. This is used, for example, for capturing 16-bit audio in WaveNet [(van den Oord et al., 2017)][2]. The values range in a 1-D integer domain of [0, 2**16-1]
, and the discretization captures P(x - 0.5 < X <= x + 0.5)
for all x
in the domain excluding the endpoints. The lowest value has probability P(X <= 0.5)
and the highest value has probability P(2**16 - 1.5 < X)
.
Below we assume a wavenet
function. It takes as input
right-shifted audio samples of shape [..., sequence_length]
. It returns a real-valued tensor of shape [..., num_mixtures * 3]
, i.e., each mixture component has a loc
and scale
parameter belonging to the logistic distribution, and a logits
parameter determining the unnormalized probability of that component.
import tensorflow_probability as tfp tfd = tfp.distributions tfb = tfp.bijectors net = wavenet(inputs) loc, unconstrained_scale, logits = tf.split(net, num_or_size_splits=3, axis=-1) scale = tf.nn.softplus(unconstrained_scale) # Form mixture of discretized logistic distributions. Note we shift the # logistic distribution by -0.5. This lets the quantization capture "rounding" # intervals, `(x-0.5, x+0.5]`, and not "ceiling" intervals, `(x-1, x]`. discretized_logistic_dist = tfd.QuantizedDistribution( distribution=tfd.TransformedDistribution( distribution=tfd.Logistic(loc=loc, scale=scale), bijector=tfb.AffineScalar(shift=-0.5)), low=0., high=2**16 - 1.) mixture_dist = tfd.MixtureSameFamily( mixture_distribution=tfd.Categorical(logits=logits), components_distribution=discretized_logistic_dist) neg_log_likelihood = -tf.reduce_sum(mixture_dist.log_prob(targets)) train_op = tf.train.AdamOptimizer().minimize(neg_log_likelihood)
After instantiating mixture_dist
, we illustrate maximum likelihood by calculating its log-probability of audio samples as target
and optimizing.
References
[1]: Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. PixelCNN++: Improving the PixelCNN with discretized logistic mixture likelihood and other modifications. International Conference on Learning Representations, 2017. https://arxiv.org/abs/1701.05517 [2]: Aaron van den Oord et al. Parallel WaveNet: Fast High-Fidelity Speech Synthesis. arXiv preprint arXiv:1711.10433, 2017. https://arxiv.org/abs/1711.10433
Args | |
---|---|
distribution | The base distribution class to transform. Typically an instance of Distribution . |
low | Tensor with same dtype as this distribution and shape able to be added to samples. Should be a whole number. Default None . If provided, base distribution's prob should be defined at low . |
high | Tensor with same dtype as this distribution and shape able to be added to samples. Should be a whole number. Default None . If provided, base distribution's prob should be defined at high - 1 . high must be strictly greater than low . |
validate_args | Python bool , default False . When True distribution parameters are checked for validity despite possibly degrading runtime performance. When False invalid inputs may silently render incorrect outputs. |
name | Python str name prefixed to Ops created by this class. |
Raises | |
---|---|
TypeError | If dist_cls is not a subclass of Distribution or continuous. |
NotImplementedError | If the base distribution does not implement cdf . |
Attributes | |
---|---|
allow_nan_stats | Python bool describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined. |
batch_shape | Shape of a single sample from a single event index as a TensorShape . May be partially defined or unknown. The batch dimensions are indexes into independent, non-identical parameterizations of this distribution. |
distribution | Base distribution, p(x). |
dtype | The DType of Tensor s handled by this Distribution . |
event_shape | Shape of a single sample from a single batch as a TensorShape . May be partially defined or unknown. |
high | Highest value that quantization returns. |
low | Lowest value that quantization returns. |
name | Name prepended to all ops created by this Distribution . |
parameters | Dictionary of parameters used to instantiate this Distribution . |
reparameterization_type | Describes how samples from the distribution are reparameterized. Currently this is one of the static instances |
validate_args | Python bool indicating possibly expensive checks are enabled. |
Methods
batch_shape_tensor
batch_shape_tensor( name='batch_shape_tensor' )
Shape of a single sample from a single event index as a 1-D Tensor
.
The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.
Args | |
---|---|
name | name to give to the op |
Returns | |
---|---|
batch_shape | Tensor . |
cdf
cdf( value, name='cdf' )
Cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
cdf(x) := P[X <= x]
Additional documentation from QuantizedDistribution
:
For whole numbers y
,
cdf(y) := P[Y <= y] = 1, if y >= high, = 0, if y < low, = P[X <= y], otherwise.
Since Y
only has mass at whole numbers, P[Y <= y] = P[Y <= floor(y)]
. This dictates that fractional y
are first floored to a whole number, and then above definition applies.
The base distribution's cdf
method must be defined on y - 1
.
Args | |
---|---|
value | float or double Tensor . |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
cdf | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype . |
copy
copy( **override_parameters_kwargs )
Creates a deep copy of the distribution.
Note: the copy distribution may continue to depend on the original initialization arguments.
Args | |
---|---|
**override_parameters_kwargs | String/value dictionary of initialization arguments to override with new values. |
Returns | |
---|---|
distribution | A new instance of type(self) initialized from the union of self.parameters and override_parameters_kwargs, i.e., dict(self.parameters, **override_parameters_kwargs) . |
covariance
covariance( name='covariance' )
Covariance.
Covariance is (possibly) defined only for non-scalar-event distributions.
For example, for a length-k
, vector-valued distribution, it is calculated as,
Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]
where Cov
is a (batch of) k x k
matrix, 0 <= (i, j) < k
, and E
denotes expectation.
Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), Covariance
shall return a (batch of) matrices under some vectorization of the events, i.e.,
Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
where Cov
is a (batch of) k' x k'
matrices, 0 <= (i, j) < k' = reduce_prod(event_shape)
, and Vec
is some function mapping indices of this distribution's event dimensions to indices of a length-k'
vector.
Args | |
---|---|
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
covariance | Floating-point Tensor with shape [B1, ..., Bn, k', k'] where the first n dimensions are batch coordinates and k' = reduce_prod(self.event_shape) . |
cross_entropy
cross_entropy( other, name='cross_entropy' )
Computes the (Shannon) cross entropy.
Denote this distribution (self
) by P
and the other
distribution by Q
. Assuming P, Q
are absolutely continuous with respect to one another and permit densities p(x) dr(x)
and q(x) dr(x)
, (Shanon) cross entropy is defined as:
H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)
where F
denotes the support of the random variable X ~ P
.
Args | |
---|---|
other | tfp.distributions.Distribution instance. |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
cross_entropy | self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of (Shanon) cross entropy. |
entropy
entropy( name='entropy' )
Shannon entropy in nats.
event_shape_tensor
event_shape_tensor( name='event_shape_tensor' )
Shape of a single sample from a single batch as a 1-D int32 Tensor
.
Args | |
---|---|
name | name to give to the op |
Returns | |
---|---|
event_shape | Tensor . |
is_scalar_batch
is_scalar_batch( name='is_scalar_batch' )
Indicates that batch_shape == []
.
Args | |
---|---|
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
is_scalar_batch | bool scalar Tensor . |
is_scalar_event
is_scalar_event( name='is_scalar_event' )
Indicates that event_shape == []
.
Args | |
---|---|
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
is_scalar_event | bool scalar Tensor . |
kl_divergence
kl_divergence( other, name='kl_divergence' )
Computes the Kullback--Leibler divergence.
Denote this distribution (self
) by p
and the other
distribution by q
. Assuming p, q
are absolutely continuous with respect to reference measure r
, the KL divergence is defined as:
KL[p, q] = E_p[log(p(X)/q(X))] = -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x) = H[p, q] - H[p]
where F
denotes the support of the random variable X ~ p
, H[., .]
denotes (Shanon) cross entropy, and H[.]
denotes (Shanon) entropy.
Args | |
---|---|
other | tfp.distributions.Distribution instance. |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
kl_divergence | self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of the Kullback-Leibler divergence. |
log_cdf
log_cdf( value, name='log_cdf' )
Log cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
log_cdf(x) := Log[ P[X <= x] ]
Often, a numerical approximation can be used for log_cdf(x)
that yields a more accurate answer than simply taking the logarithm of the cdf
when x << -1
.
Additional documentation from QuantizedDistribution
:
For whole numbers y
,
cdf(y) := P[Y <= y] = 1, if y >= high, = 0, if y < low, = P[X <= y], otherwise.
Since Y
only has mass at whole numbers, P[Y <= y] = P[Y <= floor(y)]
. This dictates that fractional y
are first floored to a whole number, and then above definition applies.
The base distribution's log_cdf
method must be defined on y - 1
.
Args | |
---|---|
value | float or double Tensor . |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
logcdf | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype . |
log_prob
log_prob( value, name='log_prob' )
Log probability density/mass function.
Additional documentation from QuantizedDistribution
:
For whole numbers y
,
P[Y = y] := P[X <= low], if y == low, := P[X > high - 1], y == high, := 0, if j < low or y > high, := P[y - 1 < X <= y], all other y.
The base distribution's log_cdf
method must be defined on y - 1
. If the base distribution has a log_survival_function
method results will be more accurate for large values of y
, and in this case the log_survival_function
must also be defined on y - 1
.
Args | |
---|---|
value | float or double Tensor . |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
log_prob | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype . |
log_survival_function
log_survival_function( value, name='log_survival_function' )
Log survival function.
Given random variable X
, the survival function is defined:
log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ]
Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x)
when x >> 1
.
Additional documentation from QuantizedDistribution
:
For whole numbers y
,
survival_function(y) := P[Y > y] = 0, if y >= high, = 1, if y < low, = P[X <= y], otherwise.
Since Y
only has mass at whole numbers, P[Y <= y] = P[Y <= floor(y)]
. This dictates that fractional y
are first floored to a whole number, and then above definition applies.
The base distribution's log_cdf
method must be defined on y - 1
.
Args | |
---|---|
value | float or double Tensor . |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype . |
mean
mean( name='mean' )
Mean.
mode
mode( name='mode' )
Mode.
param_shapes
@classmethod param_shapes( sample_shape, name='DistributionParamShapes' )
Shapes of parameters given the desired shape of a call to sample()
.
This is a class method that describes what key/value arguments are required to instantiate the given Distribution
so that a particular shape is returned for that instance's call to sample()
.
Subclasses should override class method _param_shapes
.
Args | |
---|---|
sample_shape | Tensor or python list/tuple. Desired shape of a call to sample() . |
name | name to prepend ops with. |
Returns | |
---|---|
dict of parameter name to Tensor shapes. |
param_static_shapes
@classmethod param_static_shapes( sample_shape )
param_shapes with static (i.e. TensorShape
) shapes.
This is a class method that describes what key/value arguments are required to instantiate the given Distribution
so that a particular shape is returned for that instance's call to sample()
. Assumes that the sample's shape is known statically.
Subclasses should override class method _param_shapes
to return constant-valued tensors when constant values are fed.
Args | |
---|---|
sample_shape | TensorShape or python list/tuple. Desired shape of a call to sample() . |
Returns | |
---|---|
dict of parameter name to TensorShape . |
Raises | |
---|---|
ValueError | if sample_shape is a TensorShape and is not fully defined. |
prob
prob( value, name='prob' )
Probability density/mass function.
Additional documentation from QuantizedDistribution
:
For whole numbers y
,
P[Y = y] := P[X <= low], if y == low, := P[X > high - 1], y == high, := 0, if j < low or y > high, := P[y - 1 < X <= y], all other y.
The base distribution's cdf
method must be defined on y - 1
. If the base distribution has a survival_function
method, results will be more accurate for large values of y
, and in this case the survival_function
must also be defined on y - 1
.
Args | |
---|---|
value | float or double Tensor . |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
prob | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype . |
quantile
quantile( value, name='quantile' )
Quantile function. Aka "inverse cdf" or "percent point function".
Given random variable X
and p in [0, 1]
, the quantile
is:
quantile(p) := x such that P[X <= x] == p
Args | |
---|---|
value | float or double Tensor . |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
quantile | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype . |
sample
sample( sample_shape=(), seed=None, name='sample' )
Generate samples of the specified shape.
Note that a call to sample()
without arguments will generate a single sample.
Args | |
---|---|
sample_shape | 0D or 1D int32 Tensor . Shape of the generated samples. |
seed | Python integer seed for RNG |
name | name to give to the op. |
Returns | |
---|---|
samples | a Tensor with prepended dimensions sample_shape . |
stddev
stddev( name='stddev' )
Standard deviation.
Standard deviation is defined as,
stddev = E[(X - E[X])**2]**0.5
where X
is the random variable associated with this distribution, E
denotes expectation, and stddev.shape = batch_shape + event_shape
.
Args | |
---|---|
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
stddev | Floating-point Tensor with shape identical to batch_shape + event_shape , i.e., the same shape as self.mean() . |
survival_function
survival_function( value, name='survival_function' )
Survival function.
Given random variable X
, the survival function is defined:
survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x).
Additional documentation from QuantizedDistribution
:
For whole numbers y
,
survival_function(y) := P[Y > y] = 0, if y >= high, = 1, if y < low, = P[X <= y], otherwise.
Since Y
only has mass at whole numbers, P[Y <= y] = P[Y <= floor(y)]
. This dictates that fractional y
are first floored to a whole number, and then above definition applies.
The base distribution's cdf
method must be defined on y - 1
.
Args | |
---|---|
value | float or double Tensor . |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype . |
variance
variance( name='variance' )
Variance.
Variance is defined as,
Var = E[(X - E[X])**2]
where X
is the random variable associated with this distribution, E
denotes expectation, and Var.shape = batch_shape + event_shape
.
Args | |
---|---|
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
variance | Floating-point Tensor with shape identical to batch_shape + event_shape , i.e., the same shape as self.mean() . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/distributions/QuantizedDistribution