tf.contrib.image.single_image_random_dot_stereograms
Output a RandomDotStereogram Tensor for export via encode_PNG/JPG OP.
tf.contrib.image.single_image_random_dot_stereograms( depth_values, hidden_surface_removal=None, convergence_dots_size=None, dots_per_inch=None, eye_separation=None, mu=None, normalize=None, normalize_max=None, normalize_min=None, border_level=None, number_colors=None, output_image_shape=None, output_data_window=None )
Given the 2-D tensor 'depth_values' with encoded Z values, this operation will encode 3-D data into a 2-D image. The output of this Op is suitable for the encode_PNG/JPG ops. Be careful with image compression as this may corrupt the encode 3-D data within the image.
Based upon this paper.
This outputs a SIRDS image as picture_out.png:
img=[[1,2,3,3,2,1], [1,2,3,4,5,2], [1,2,3,4,5,3], [1,2,3,4,5,4], [6,5,4,4,5,5]] session = tf.compat.v1.InteractiveSession() sirds = single_image_random_dot_stereograms( img, convergence_dots_size=8, number_colors=256,normalize=True) out = sirds.eval() png = tf.image.encode_png(out).eval() with open('picture_out.png', 'wb') as f: f.write(png)
Args | |
---|---|
depth_values | A Tensor . Must be one of the following types: float64 , float32 , int64 , int32 . Z values of data to encode into 'output_data_window' window, lower further away {0.0 floor(far), 1.0 ceiling(near) after norm}, must be 2-D tensor |
hidden_surface_removal | An optional bool . Defaults to True . Activate hidden surface removal |
convergence_dots_size | An optional int . Defaults to 8 . Black dot size in pixels to help view converge image, drawn on bottom of the image |
dots_per_inch | An optional int . Defaults to 72 . Output device in dots/inch |
eye_separation | An optional float . Defaults to 2.5 . Separation between eyes in inches |
mu | An optional float . Defaults to 0.3333 . Depth of field, Fraction of viewing distance (eg. 1/3 = 0.3333) |
normalize | An optional bool . Defaults to True . Normalize input data to [0.0, 1.0] |
normalize_max | An optional float . Defaults to -100 . Fix MAX value for Normalization (0.0) - if < MIN, autoscale |
normalize_min | An optional float . Defaults to 100 . Fix MIN value for Normalization (0.0) - if > MAX, autoscale |
border_level | An optional float . Defaults to 0 . Value of bord in depth 0.0 {far} to 1.0 {near} |
number_colors | An optional int . Defaults to 256 . 2 (Black & White), 256 (grayscale), and Numbers > 256 (Full Color) are supported |
output_image_shape | An optional tf.TensorShape or list of ints . Defaults to shape [1024, 768, 1] . Defines output shape of returned image in '[X,Y, Channels]' 1-grayscale, 3 color; channels will be updated to 3 if number_colors > 256 |
output_data_window | An optional tf.TensorShape or list of ints . Defaults to [1022, 757] . Size of "DATA" window, must be equal to or smaller than output_image_shape , will be centered and use convergence_dots_size for best fit to avoid overlap if possible |
Returns | |
---|---|
A Tensor of type uint8 of shape 'output_image_shape' with encoded 'depth_values' |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/image/single_image_random_dot_stereograms