tf.contrib.distributions.ConditionalDistribution

Distribution that supports intrinsic parameters (local latents).

Inherits From: Distribution

Subclasses of this distribution may have additional keyword arguments passed to their sample-based methods (i.e. sample, log_prob, etc.).

Args
dtype The type of the event samples. None implies no type-enforcement.
reparameterization_type Instance of ReparameterizationType. If distributions.FULLY_REPARAMETERIZED, this Distribution can be reparameterized in terms of some standard distribution with a function whose Jacobian is constant for the support of the standard distribution. If distributions.NOT_REPARAMETERIZED, then no such reparameterization is available.
validate_args Python bool, default False. When True distribution parameters are checked for validity despite possibly degrading runtime performance. When False invalid inputs may silently render incorrect outputs.
allow_nan_stats Python bool, default True. When True, statistics (e.g., mean, mode, variance) use the value "NaN" to indicate the result is undefined. When False, an exception is raised if one or more of the statistic's batch members are undefined.
parameters Python dict of parameters used to instantiate this Distribution.
graph_parents Python list of graph prerequisites of this Distribution.
name Python str name prefixed to Ops created by this class. Default: subclass name.
Raises
ValueError if any member of graph_parents is None or not a Tensor.
Attributes
allow_nan_stats Python bool describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined.

batch_shape Shape of a single sample from a single event index as a TensorShape.

May be partially defined or unknown.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

dtype The DType of Tensors handled by this Distribution.
event_shape Shape of a single sample from a single batch as a TensorShape.

May be partially defined or unknown.

name Name prepended to all ops created by this Distribution.
parameters Dictionary of parameters used to instantiate this Distribution.
reparameterization_type Describes how samples from the distribution are reparameterized.

Currently this is one of the static instances distributions.FULLY_REPARAMETERIZED or distributions.NOT_REPARAMETERIZED.

validate_args Python bool indicating possibly expensive checks are enabled.

Methods

batch_shape_tensor

View source

Shape of a single sample from a single event index as a 1-D Tensor.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

Args
name name to give to the op
Returns
batch_shape Tensor.

cdf

View source

kwargs:
  • **condition_kwargs: Named arguments forwarded to subclass implementation.

copy

View source

Creates a deep copy of the distribution.

Note: the copy distribution may continue to depend on the original initialization arguments.
Args
**override_parameters_kwargs String/value dictionary of initialization arguments to override with new values.
Returns
distribution A new instance of type(self) initialized from the union of self.parameters and override_parameters_kwargs, i.e., dict(self.parameters, **override_parameters_kwargs).

covariance

View source

Covariance.

Covariance is (possibly) defined only for non-scalar-event distributions.

For example, for a length-k, vector-valued distribution, it is calculated as,

Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]

where Cov is a (batch of) k x k matrix, 0 <= (i, j) < k, and E denotes expectation.

Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), Covariance shall return a (batch of) matrices under some vectorization of the events, i.e.,

Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]

where Cov is a (batch of) k' x k' matrices, 0 <= (i, j) < k' = reduce_prod(event_shape), and Vec is some function mapping indices of this distribution's event dimensions to indices of a length-k' vector.

Args
name Python str prepended to names of ops created by this function.
Returns
covariance Floating-point Tensor with shape [B1, ..., Bn, k', k'] where the first n dimensions are batch coordinates and k' = reduce_prod(self.event_shape).

cross_entropy

View source

Computes the (Shannon) cross entropy.

Denote this distribution (self) by P and the other distribution by Q. Assuming P, Q are absolutely continuous with respect to one another and permit densities p(x) dr(x) and q(x) dr(x), (Shanon) cross entropy is defined as:

H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)

where F denotes the support of the random variable X ~ P.

Args
other tfp.distributions.Distribution instance.
name Python str prepended to names of ops created by this function.
Returns
cross_entropy self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of (Shanon) cross entropy.

entropy

View source

Shannon entropy in nats.

event_shape_tensor

View source

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args
name name to give to the op
Returns
event_shape Tensor.

is_scalar_batch

View source

Indicates that batch_shape == [].

Args
name Python str prepended to names of ops created by this function.
Returns
is_scalar_batch bool scalar Tensor.

is_scalar_event

View source

Indicates that event_shape == [].

Args
name Python str prepended to names of ops created by this function.
Returns
is_scalar_event bool scalar Tensor.

kl_divergence

View source

Computes the Kullback--Leibler divergence.

Denote this distribution (self) by p and the other distribution by q. Assuming p, q are absolutely continuous with respect to reference measure r, the KL divergence is defined as:

KL[p, q] = E_p[log(p(X)/q(X))]
         = -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
         = H[p, q] - H[p]

where F denotes the support of the random variable X ~ p, H[., .] denotes (Shanon) cross entropy, and H[.] denotes (Shanon) entropy.

Args
other tfp.distributions.Distribution instance.
name Python str prepended to names of ops created by this function.
Returns
kl_divergence self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of the Kullback-Leibler divergence.

log_cdf

View source

kwargs:
  • **condition_kwargs: Named arguments forwarded to subclass implementation.

log_prob

View source

kwargs:
  • **condition_kwargs: Named arguments forwarded to subclass implementation.

log_survival_function

View source

kwargs:
  • **condition_kwargs: Named arguments forwarded to subclass implementation.

mean

View source

Mean.

mode

View source

Mode.

param_shapes

View source

Shapes of parameters given the desired shape of a call to sample().

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample().

Subclasses should override class method _param_shapes.

Args
sample_shape Tensor or python list/tuple. Desired shape of a call to sample().
name name to prepend ops with.
Returns
dict of parameter name to Tensor shapes.

param_static_shapes

View source

param_shapes with static (i.e. TensorShape) shapes.

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample(). Assumes that the sample's shape is known statically.

Subclasses should override class method _param_shapes to return constant-valued tensors when constant values are fed.

Args
sample_shape TensorShape or python list/tuple. Desired shape of a call to sample().
Returns
dict of parameter name to TensorShape.
Raises
ValueError if sample_shape is a TensorShape and is not fully defined.

prob

View source

kwargs:
  • **condition_kwargs: Named arguments forwarded to subclass implementation.

quantile

View source

Quantile function. Aka "inverse cdf" or "percent point function".

Given random variable X and p in [0, 1], the quantile is:

quantile(p) := x such that P[X <= x] == p
Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.
Returns
quantile a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

sample

View source

kwargs:
  • **condition_kwargs: Named arguments forwarded to subclass implementation.

stddev

View source

Standard deviation.

Standard deviation is defined as,

stddev = E[(X - E[X])**2]**0.5

where X is the random variable associated with this distribution, E denotes expectation, and stddev.shape = batch_shape + event_shape.

Args
name Python str prepended to names of ops created by this function.
Returns
stddev Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().

survival_function

View source

kwargs:
  • **condition_kwargs: Named arguments forwarded to subclass implementation.

variance

View source

Variance.

Variance is defined as,

Var = E[(X - E[X])**2]

where X is the random variable associated with this distribution, E denotes expectation, and Var.shape = batch_shape + event_shape.

Args
name Python str prepended to names of ops created by this function.
Returns
variance Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/distributions/ConditionalDistribution