tf.contrib.estimator.clip_gradients_by_norm
Returns an optimizer which clips gradients before applying them.
tf.contrib.estimator.clip_gradients_by_norm( optimizer, clip_norm )
Example:
optimizer = tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001) optimizer = tf.contrib.estimator.clip_gradients_by_norm( optimizer, clip_norm) estimator = tf.estimator.DNNClassifier( feature_columns=[...], hidden_units=[1024, 512, 256], optimizer=optimizer)
Args | |
---|---|
optimizer | An tf.Optimizer object to apply gradients. |
clip_norm | A 0-D (scalar) Tensor > 0. The clipping ratio. |
Returns | |
---|---|
A tf.Optimizer . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/estimator/clip_gradients_by_norm