tf.contrib.data.sliding_window_batch

A sliding window over a dataset. (deprecated) (deprecated arguments)

This transformation passes a sliding window over this dataset. The window size is window_size, the stride of the input elements is window_stride, and the shift between consecutive windows is window_shift. If the remaining elements cannot fill up the sliding window, this transformation will drop the final smaller element. For example:

# NOTE: The following examples use `{ ... }` to represent the
# contents of a dataset.
a = { [1], [2], [3], [4], [5], [6] }

a.apply(sliding_window_batch(window_size=3)) ==
{ [[1], [2], [3]], [[2], [3], [4]], [[3], [4], [5]], [[4], [5], [6]] }

a.apply(sliding_window_batch(window_size=3, window_shift=2)) ==
{ [[1], [2], [3]], [[3], [4], [5]] }

a.apply(sliding_window_batch(window_size=3, window_stride=2)) ==
{ [[1], [3], [5]], [[2], [4], [6]] }
Args
window_size A tf.int64 scalar tf.Tensor, representing the number of elements in the sliding window. It must be positive.
stride (Optional.) A tf.int64 scalar tf.Tensor, representing the forward shift of the sliding window in each iteration. The default is 1. It must be positive. Deprecated alias for window_shift.
window_shift (Optional.) A tf.int64 scalar tf.Tensor, representing the forward shift of the sliding window in each iteration. The default is 1. It must be positive.
window_stride (Optional.) A tf.int64 scalar tf.Tensor, representing the stride of the input elements in the sliding window. The default is 1. It must be positive.
Returns
A Dataset transformation function, which can be passed to tf.data.Dataset.apply.
Raises
ValueError if invalid arguments are provided.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/data/sliding_window_batch