tf.contrib.layers.real_valued_column
Creates a _RealValuedColumn
for dense numeric data.
tf.contrib.layers.real_valued_column(
column_name, dimension=1, default_value=None, dtype=tf.dtypes.float32,
normalizer=None
)
Args |
column_name | A string defining real valued column name. |
dimension | An integer specifying dimension of the real valued column. The default is 1. |
default_value | A single value compatible with dtype or a list of values compatible with dtype which the column takes on during tf.Example parsing if data is missing. When dimension is not None, a default value of None will cause tf.io.parse_example to fail if an example does not contain this column. If a single value is provided, the same value will be applied as the default value for every dimension. If a list of values is provided, the length of the list should be equal to the value of dimension . Only scalar default value is supported in case dimension is not specified. |
dtype | defines the type of values. Default value is tf.float32. Must be a non-quantized, real integer or floating point type. |
normalizer | If not None, a function that can be used to normalize the value of the real valued column after default_value is applied for parsing. Normalizer function takes the input tensor as its argument, and returns the output tensor. (e.g. lambda x: (x - 3.0) / 4.2). Note that for variable length columns, the normalizer should expect an input_tensor of type SparseTensor . |
Returns |
A _RealValuedColumn. |
Raises |
TypeError | if dimension is not an int |
ValueError | if dimension is not a positive integer |
TypeError | if default_value is a list but its length is not equal to the value of dimension . |
TypeError | if default_value is not compatible with dtype. |
ValueError | if dtype is not convertible to tf.float32. |