tf.contrib.distributions.bijectors.Reshape
Reshapes the event_shape
of a Tensor
.
Inherits From: Bijector
tf.contrib.distributions.bijectors.Reshape(
event_shape_out, event_shape_in=(-1,), validate_args=False, name=None
)
The semantics generally follow that of tf.reshape()
, with a few differences:
- The user must provide both the input and output shape, so that the transformation can be inverted. If an input shape is not specified, the default assumes a vector-shaped input, i.e., event_shape_in = (-1,).
- The
Reshape
bijector automatically broadcasts over the leftmost dimensions of its input (sample_shape
and batch_shape
); only the rightmost event_ndims_in
dimensions are reshaped. The number of dimensions to reshape is inferred from the provided event_shape_in
(event_ndims_in = len(event_shape_in)
).
Example usage:
import tensorflow_probability as tfp
tfb = tfp.bijectors
r = tfb.Reshape(event_shape_out=[1, -1])
r.forward([3., 4.]) # shape [2]
# ==> [[3., 4.]] # shape [1, 2]
r.forward([[1., 2.], [3., 4.]]) # shape [2, 2]
# ==> [[[1., 2.]],
# [[3., 4.]]] # shape [2, 1, 2]
r.inverse([[3., 4.]]) # shape [1,2]
# ==> [3., 4.] # shape [2]
r.forward_log_det_jacobian(any_value)
# ==> 0.
r.inverse_log_det_jacobian(any_value)
# ==> 0.
Args |
event_shape_out | An int -like vector-shaped Tensor representing the event shape of the transformed output. |
event_shape_in | An optional int -like vector-shape Tensor representing the event shape of the input. This is required in order to define inverse operations; the default of (-1,) assumes a vector-shaped input. |
validate_args | Python bool indicating whether arguments should be checked for correctness. |
name | Python str , name given to ops managed by this object. |
Raises |
TypeError | if either event_shape_in or event_shape_out has non-integer dtype . |
ValueError | if either of event_shape_in or event_shape_out has non-vector shape (rank > 1 ), or if their sizes do not match. |
Attributes |
dtype | dtype of Tensor s transformable by this distribution. |
forward_min_event_ndims | Returns the minimal number of dimensions bijector.forward operates on. |
graph_parents | Returns this Bijector 's graph_parents as a Python list. |
inverse_min_event_ndims | Returns the minimal number of dimensions bijector.inverse operates on. |
is_constant_jacobian | Returns true iff the Jacobian matrix is not a function of x.
Note: Jacobian matrix is either constant for both forward and inverse or neither.
|
name | Returns the string name of this Bijector . |
validate_args | Returns True if Tensor arguments will be validated. |
Methods
forward
View source
forward(
x, name='forward'
)
Returns the forward Bijector
evaluation, i.e., X = g(Y).
Args |
x | Tensor . The input to the "forward" evaluation. |
name | The name to give this op. |
Raises |
TypeError | if self.dtype is specified and x.dtype is not self.dtype . |
NotImplementedError | if _forward is not implemented. |
forward_event_shape
View source
forward_event_shape(
input_shape
)
Shape of a single sample from a single batch as a TensorShape
.
Same meaning as forward_event_shape_tensor
. May be only partially defined.
Args |
input_shape | TensorShape indicating event-portion shape passed into forward function. |
Returns |
forward_event_shape_tensor | TensorShape indicating event-portion shape after applying forward . Possibly unknown. |
forward_event_shape_tensor
View source
forward_event_shape_tensor(
input_shape, name='forward_event_shape_tensor'
)
Shape of a single sample from a single batch as an int32
1D Tensor
.
Args |
input_shape | Tensor , int32 vector indicating event-portion shape passed into forward function. |
name | name to give to the op |
Returns |
forward_event_shape_tensor | Tensor , int32 vector indicating event-portion shape after applying forward . |
forward_log_det_jacobian
View source
forward_log_det_jacobian(
x, event_ndims, name='forward_log_det_jacobian'
)
Returns both the forward_log_det_jacobian.
Args |
x | Tensor . The input to the "forward" Jacobian determinant evaluation. |
event_ndims | Number of dimensions in the probabilistic events being transformed. Must be greater than or equal to self.forward_min_event_ndims . The result is summed over the final dimensions to produce a scalar Jacobian determinant for each event, i.e. it has shape x.shape.ndims - event_ndims dimensions. |
name | The name to give this op. |
Returns |
Tensor , if this bijector is injective. If not injective this is not implemented. |
Raises |
TypeError | if self.dtype is specified and y.dtype is not self.dtype . |
NotImplementedError | if neither _forward_log_det_jacobian nor {_inverse , _inverse_log_det_jacobian } are implemented, or this is a non-injective bijector. |
inverse
View source
inverse(
y, name='inverse'
)
Returns the inverse Bijector
evaluation, i.e., X = g^{-1}(Y).
Args |
y | Tensor . The input to the "inverse" evaluation. |
name | The name to give this op. |
Returns |
Tensor , if this bijector is injective. If not injective, returns the k-tuple containing the unique k points (x1, ..., xk) such that g(xi) = y . |
Raises |
TypeError | if self.dtype is specified and y.dtype is not self.dtype . |
NotImplementedError | if _inverse is not implemented. |
inverse_event_shape
View source
inverse_event_shape(
output_shape
)
Shape of a single sample from a single batch as a TensorShape
.
Same meaning as inverse_event_shape_tensor
. May be only partially defined.
Args |
output_shape | TensorShape indicating event-portion shape passed into inverse function. |
Returns |
inverse_event_shape_tensor | TensorShape indicating event-portion shape after applying inverse . Possibly unknown. |
inverse_event_shape_tensor
View source
inverse_event_shape_tensor(
output_shape, name='inverse_event_shape_tensor'
)
Shape of a single sample from a single batch as an int32
1D Tensor
.
Args |
output_shape | Tensor , int32 vector indicating event-portion shape passed into inverse function. |
name | name to give to the op |
Returns |
inverse_event_shape_tensor | Tensor , int32 vector indicating event-portion shape after applying inverse . |
inverse_log_det_jacobian
View source
inverse_log_det_jacobian(
y, event_ndims, name='inverse_log_det_jacobian'
)
Returns the (log o det o Jacobian o inverse)(y).
Mathematically, returns: log(det(dX/dY))(Y)
. (Recall that: X=g^{-1}(Y)
.)
Note that forward_log_det_jacobian
is the negative of this function, evaluated at g^{-1}(y)
.
Args |
y | Tensor . The input to the "inverse" Jacobian determinant evaluation. |
event_ndims | Number of dimensions in the probabilistic events being transformed. Must be greater than or equal to self.inverse_min_event_ndims . The result is summed over the final dimensions to produce a scalar Jacobian determinant for each event, i.e. it has shape y.shape.ndims - event_ndims dimensions. |
name | The name to give this op. |
Returns |
Tensor , if this bijector is injective. If not injective, returns the tuple of local log det Jacobians, log(det(Dg_i^{-1}(y))) , where g_i is the restriction of g to the ith partition Di . |
Raises |
TypeError | if self.dtype is specified and y.dtype is not self.dtype . |
NotImplementedError | if _inverse_log_det_jacobian is not implemented. |