std::cyl_bessel_j, std::cyl_bessel_jf, std::cyl_bessel_jl
double cyl_bessel_j( double ν, double x ); float cyl_bessel_jf( float ν, float x ); long double cyl_bessel_jl( long double ν, long double x ); | (1) | (since C++17) |
Promoted cyl_bessel_j( Arithmetic ν, Arithmetic x ); | (2) | (since C++17) |
double
. If any argument is long double
, then the return type Promoted
is also long double
, otherwise the return type is always double
.Parameters
ν | - | the order of the function |
x | - | the argument of the function |
Return value
If no errors occur, value of the cylindrical Bessel function of the first kind ofν
and x
, that is Jν(x) = Σ∞
k=0
(-1)k (x/2)ν+2k |
k!Γ(ν+k+1) |
Error handling
Errors may be reported as specified in math_errhandling.
- If the argument is NaN, NaN is returned and domain error is not reported
- If ν>=128, the behavior is implementation-defined
Notes
Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of this function is also available in boost.math.
Example
#include <cmath> #include <iostream> int main() { // spot check for ν == 0 double x = 1.2345; std::cout << "J_0(" << x << ") = " << std::cyl_bessel_j(0, x) << '\n'; // series expansion for J_0 double fct = 1; double sum = 0; for(int k = 0; k < 6; fct*=++k) { sum += std::pow(-1, k)*std::pow((x/2),2*k) / std::pow(fct,2); std::cout << "sum = " << sum << '\n'; } }
Output:
J_0(1.2345) = 0.653792 sum = 1 sum = 0.619002 sum = 0.655292 sum = 0.653756 sum = 0.653793 sum = 0.653792
External links
Weisstein, Eric W. "Bessel Function of the First Kind." From MathWorld--A Wolfram Web Resource.
See also
(C++17)(C++17)(C++17) | regular modified cylindrical Bessel functions (function) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/numeric/special_math/cyl_bessel_j