std::enable_shared_from_this
Defined in header <memory> | ||
|---|---|---|
template< class T > class enable_shared_from_this; | (since C++11) |
std::enable_shared_from_this allows an object t that is currently managed by a std::shared_ptr named pt to safely generate additional std::shared_ptr instances pt1, pt2, ... that all share ownership of t with pt.
Publicly inheriting from std::enable_shared_from_this<T> provides the type T with a member function shared_from_this. If an object t of type T is managed by a std::shared_ptr<T> named pt, then calling T::shared_from_this will return a new std::shared_ptr<T> that shares ownership of t with pt.
Member functions
constructs an enable_shared_from_this object (protected member function) |
|
destroys an enable_shared_from_this object (protected member function) |
|
returns a reference to this (protected member function) |
|
returns a shared_ptr which shares ownership of *this (public member function) |
|
|
(C++17) | returns the weak_ptr which shares ownership of *this (public member function) |
Member objects
| Member name | Definition |
|---|---|
weak_this (private)(C++17) | std::weak_ptr object tracking the control block of the first shared owner of *this. Exposition only |
Notes
A common implementation for enable_shared_from_this is to hold a weak reference (such as std::weak_ptr) to this. The constructors of std::shared_ptr detect the presence of an unambiguous and accessible (since C++17) enable_shared_from_this base and assign the newly created std::shared_ptr to the internally stored weak reference if not already owned by a live std::shared_ptr (since C++17). Constructing a std::shared_ptr for an object that is already managed by another std::shared_ptr will not consult the internally stored weak reference and thus will lead to undefined behavior.
It is permitted to call shared_from_this only on a previously shared object, i.e. on an object managed by std::shared_ptr<T>. Otherwise the behavior is undefined (until C++17)std::bad_weak_ptr is thrown (by the shared_ptr constructor from a default-constructed weak_this) (since C++17).
enable_shared_from_this provides the safe alternative to an expression like std::shared_ptr<T>(this), which is likely to result in this being destructed more than once by multiple owners that are unaware of each other (see example below).
Example
#include <memory>
#include <iostream>
struct Good: std::enable_shared_from_this<Good> // note: public inheritance
{
std::shared_ptr<Good> getptr() {
return shared_from_this();
}
};
struct Bad
{
std::shared_ptr<Bad> getptr() {
return std::shared_ptr<Bad>(this);
}
~Bad() { std::cout << "Bad::~Bad() called\n"; }
};
int main()
{
// Good: the two shared_ptr's share the same object
std::shared_ptr<Good> gp1 = std::make_shared<Good>();
std::shared_ptr<Good> gp2 = gp1->getptr();
std::cout << "gp2.use_count() = " << gp2.use_count() << '\n';
// Bad: shared_from_this is called without having std::shared_ptr owning the caller
try {
Good not_so_good;
std::shared_ptr<Good> gp1 = not_so_good.getptr();
} catch(std::bad_weak_ptr& e) {
// undefined behavior (until C++17) and std::bad_weak_ptr thrown (since C++17)
std::cout << e.what() << '\n';
}
// Bad, each shared_ptr thinks it's the only owner of the object
std::shared_ptr<Bad> bp1 = std::make_shared<Bad>();
std::shared_ptr<Bad> bp2 = bp1->getptr();
std::cout << "bp2.use_count() = " << bp2.use_count() << '\n';
} // UB: double-delete of BadPossible output:
gp2.use_count() = 2 bad_weak_ptr bp2.use_count() = 1 Bad::~Bad() called Bad::~Bad() called *** glibc detected *** ./test: double free or corruption
See also
|
(C++11) | smart pointer with shared object ownership semantics (class template) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/memory/enable_shared_from_this