Standard library header <memory>
This header is part of the dynamic memory management library.
Classes |
|
Pointer traits |
|
(C++11) | provides information about pointer-like types (class template) |
Garbage collector support |
|
(C++11) | lists pointer safety models (enum) |
Allocators |
|
the default allocator (class template) |
|
(C++11) | provides information about allocator types (class template) |
(C++11) | tag type used to select allocator-aware constructor overloads (class) |
(C++11) | an object of type std::allocator_arg_t used to select allocator-aware constructors (constant) |
(C++11) | checks if the specified type supports uses-allocator construction (class template) |
Uninitialized storage |
|
(deprecated in C++17)(removed in C++20) | an iterator that allows standard algorithms to store results in uninitialized memory (class template) |
Smart pointers |
|
(C++11) | smart pointer with unique object ownership semantics (class template) |
(C++11) | smart pointer with shared object ownership semantics (class template) |
(C++11) | weak reference to an object managed by std::shared_ptr (class template) |
(removed in C++17) | smart pointer with strict object ownership semantics (class template) |
Helper classes |
|
(C++20) | atomic shared pointer (class template specialization) |
(C++20) | atomic weak pointer (class template specialization) |
(C++11) | provides mixed-type owner-based ordering of shared and weak pointers (class template) |
(C++11) | allows an object to create a shared_ptr referring to itself (class template) |
(C++11) | exception thrown when accessing a weak_ptr which refers to already destroyed object (class) |
(C++11) | default deleter for unique_ptr (class template) |
(C++11) | hash support for std::unique_ptr (class template specialization) |
(C++11) | hash support for std::shared_ptr (class template specialization) |
Functions |
|
Miscellaneous |
|
(C++20) | obtains a raw pointer from a pointer-like type (function template) |
(C++11) | obtains actual address of an object, even if the & operator is overloaded (function template) |
(C++11) | aligns a pointer in a buffer (function) |
(C++20) | informs the compiler that a pointer is aligned (function template) |
Garbage collector support |
|
(C++11) | declares that an object can not be recycled (function) |
(C++11) | declares that an object can be recycled (function template) |
(C++11) | declares that a memory area does not contain traceable pointers (function) |
(C++11) | cancels the effect of std::declare_no_pointers (function) |
(C++11) | returns the current pointer safety model (function) |
Uninitialized storage |
|
copies a range of objects to an uninitialized area of memory (function template) |
|
(C++11) | copies a number of objects to an uninitialized area of memory (function template) |
copies an object to an uninitialized area of memory, defined by a range (function template) |
|
copies an object to an uninitialized area of memory, defined by a start and a count (function template) |
|
(C++17) | moves a range of objects to an uninitialized area of memory (function template) |
(C++17) | moves a number of objects to an uninitialized area of memory (function template) |
(C++17) | constructs objects by default-initialization in an uninitialized area of memory, defined by a range (function template) |
(C++17) | constructs objects by default-initialization in an uninitialized area of memory, defined by a start and a count (function template) |
(C++17) | constructs objects by value-initialization in an uninitialized area of memory, defined by a range (function template) |
(C++17) | constructs objects by value-initialization in an uninitialized area of memory, defined by a start and a count (function template) |
(C++17) | destroys an object at a given address (function template) |
(C++17) | destroys a range of objects (function template) |
(C++17) | destroys a number of objects in a range (function template) |
(deprecated in C++17)(removed in C++20) | obtains uninitialized storage (function template) |
(deprecated in C++17)(removed in C++20) | frees uninitialized storage (function template) |
Smart pointer non-member operations |
|
(C++14)(C++20) | creates a unique pointer that manages a new object (function template) |
compares to another unique_ptr or with nullptr (function template) |
|
(C++20) | creates a shared pointer that manages a new object (function template) |
(C++20) | creates a shared pointer that manages a new object allocated using an allocator (function template) |
(C++17) | applies static_cast , dynamic_cast , const_cast , or reinterpret_cast to the stored pointer (function template) |
returns the deleter of specified type, if owned (function template) |
|
compares with another shared_ptr or with nullptr (function template) |
|
outputs the value of the stored pointer to an output stream (function template) |
|
(C++11) | specializes the std::swap algorithm (function template) |
(C++11) | specializes the std::swap algorithm (function template) |
(C++11) | specializes the std::swap algorithm (function template) |
(deprecated in C++20) | specializes atomic operations for std::shared_ptr (function template) |
Niebloids |
|
Defined in namespace std::ranges |
|
---|---|
Uninitialized storage |
|
(C++20) | copies a range of objects to an uninitialized area of memory (niebloid) |
(C++20) | copies a number of objects to an uninitialized area of memory (niebloid) |
(C++20) | copies an object to an uninitialized area of memory, defined by a range (niebloid) |
(C++20) | copies an object to an uninitialized area of memory, defined by a start and a count (niebloid) |
(C++20) | moves a range of objects to an uninitialized area of memory (niebloid) |
(C++20) | moves a number of objects to an uninitialized area of memory (niebloid) |
(C++20) | constructs objects by default-initialization in an uninitialized area of memory, defined by a range (niebloid) |
(C++20) | constructs objects by default-initialization in an uninitialized area of memory, defined by a start and count (niebloid) |
(C++20) | constructs objects by value-initialization in an uninitialized area of memory, defined by a range (niebloid) |
(C++20) | constructs objects by value-initialization in an uninitialized area of memory, defined by a start and a count (niebloid) |
(C++20) | destroys an object at a given address (niebloid) |
(C++20) | destroys a range of objects (niebloid) |
(C++20) | destroys a number of objects in a range (niebloid) |
Synopsis
namespace std { // pointer traits template<class Ptr> struct pointer_traits; template<class T> struct pointer_traits<T*>; // pointer conversion template<class T> constexpr T* to_address(T* p) noexcept; template<class Ptr> auto to_address(const Ptr& p) noexcept; // pointer safety enum class pointer_safety { relaxed, preferred, strict }; void declare_reachable(void* p); template<class T> T* undeclare_reachable(T* p); void declare_no_pointers(char* p, size_t n); void undeclare_no_pointers(char* p, size_t n); pointer_safety get_pointer_safety() noexcept; // pointer alignment void* align(size_t alignment, size_t size, void*& ptr, size_t& space); template<size_t N, class T> [[nodiscard]] constexpr T* assume_aligned(T* ptr); // allocator argument tag struct allocator_arg_t { explicit allocator_arg_t() = default; }; inline constexpr allocator_arg_t allocator_arg{}; // uses_allocator template<class T, class Alloc> struct uses_allocator; // uses_allocator template<class T, class Alloc> inline constexpr bool uses_allocator_v = uses_allocator<T, Alloc>::value; // uses-allocator construction template<class T, class Alloc, class... Args> auto uses_allocator_construction_args(const Alloc& alloc, Args&&... args) -> /* see definition */; template<class T, class Alloc, class Tuple1, class Tuple2> auto uses_allocator_construction_args(const Alloc& alloc, piecewise_construct_t, Tuple1&& x, Tuple2&& y) -> /* see definition */; template<class T, class Alloc> auto uses_allocator_construction_args(const Alloc& alloc) -> /* see definition */; template<class T, class Alloc, class U, class V> auto uses_allocator_construction_args(const Alloc& alloc, U&& u, V&& v) -> /* see definition */; template<class T, class Alloc, class U, class V> auto uses_allocator_construction_args(const Alloc& alloc, const pair<U,V>& pr) -> /* see definition */; template<class T, class Alloc, class U, class V> auto uses_allocator_construction_args(const Alloc& alloc, pair<U,V>&& pr) -> /* see definition */; template<class T, class Alloc, class... Args> T make_obj_using_allocator(const Alloc& alloc, Args&&... args); template<class T, class Alloc, class... Args> T* uninitialized_construct_using_allocator(T* p, const Alloc& alloc, Args&&... args); // allocator traits template<class Alloc> struct allocator_traits; // the default allocator template<class T> class allocator; template<class T, class U> bool operator==(const allocator<T>&, const allocator<U>&) noexcept; template<class T, class U> bool operator!=(const allocator<T>&, const allocator<U>&) noexcept; // specialized algorithms // special memory concepts template<class I> concept __NoThrowInputIterator = /* see definition */; // exposition only template<class I> concept __NoThrowForwardIterator = /* see definition */; // exposition only template<class S, class I> concept __NoThrowSentinel = /* see definition */; // exposition only template<class R> concept __NoThrowInputRange = /* see definition */; // exposition only template<class R> concept __NoThrowForwardRange = /* see definition */; // exposition only template<class T> constexpr T* addressof(T& r) noexcept; template<class T> const T* addressof(const T&&) = delete; template<class ForwardIt> void uninitialized_default_construct(ForwardIt first, ForwardIt last); template<class ExecutionPolicy, class ForwardIt> void uninitialized_default_construct(ExecutionPolicy&& exec, ForwardIt first, ForwardIt last); template<class ForwardIt, class Size> ForwardIt uninitialized_default_construct_n(ForwardIt first, Size n); template<class ExecutionPolicy, class ForwardIt, class Size> ForwardIt uninitialized_default_construct_n(ExecutionPolicy&& exec, ForwardIt first, Size n); namespace ranges { template<__NoThrowForwardIterator I, __NoThrowSentinel<I> S> requires DefaultConstructible<iter_value_t<I>> I uninitialized_default_construct(I first, S last); template<__NoThrowForwardRange R> requires DefaultConstructible<iter_value_t<iterator_t<R>>> safe_iterator_t<R> uninitialized_default_construct(R&& r); template<__NoThrowForwardIterator I> requires DefaultConstructible<iter_value_t<I>> I uninitialized_default_construct_n(I first, iter_difference_t<I> n); } template<class ForwardIt> void uninitialized_value_construct(ForwardIt first, ForwardIt last); template<class ExecutionPolicy, class ForwardIt> void uninitialized_value_construct(ExecutionPolicy&& exec, ForwardIt first, ForwardIt last); template<class ForwardIt, class Size> ForwardIt uninitialized_value_construct_n(ForwardIt first, Size n); template<class ExecutionPolicy, class ForwardIt, class Size> ForwardIt uninitialized_value_construct_n(ExecutionPolicy&& exec, ForwardIt first, Size n); namespace ranges { template<__NoThrowForwardIterator I, __NoThrowSentinel<I> S> requires DefaultConstructible<iter_value_t<I>> I uninitialized_value_construct(I first, S last); template<__NoThrowForwardRange R> requires DefaultConstructible<iter_value_t<iterator_t<R>>> safe_iterator_t<R> uninitialized_value_construct(R&& r); template<__NoThrowForwardIterator I> requires DefaultConstructible<iter_value_t<I>> I uninitialized_value_construct_n(I first, iter_difference_t<I> n); } template<class InputIt, class ForwardIt> ForwardIt uninitialized_copy(InputIt first, InputIt last, ForwardIt result); template<class ExecutionPolicy, class InputIt, class ForwardIt> ForwardIt uninitialized_copy(ExecutionPolicy&& exec, InputIt first, InputIt last, ForwardIt result); template<class InputIt, class Size, class ForwardIt> ForwardIt uninitialized_copy_n(InputIt first, Size n, ForwardIt result); template<class ExecutionPolicy, class InputIt, class Size, class ForwardIt> ForwardIt uninitialized_copy_n(ExecutionPolicy&& exec, InputIt first, Size n, ForwardIt result); namespace ranges { template<class I, class O> using uninitialized_copy_result = copy_result<I, O>; template<InputIterator I, Sentinel<I> S1, __NoThrowForwardIterator O, __NoThrowSentinel<O> S2> requires Constructible<iter_value_t<O>, iter_reference_t<I>> uninitialized_copy_result<I, O> uninitialized_copy(I ifirst, S1 ilast, O ofirst, S2 olast); template<InputRange IR, __NoThrowForwardRange OR> requires Constructible<iter_value_t<iterator_t<OR>>, iter_reference_t<iterator_t<IR>>> uninitialized_copy_result<safe_iterator_t<IR>, safe_iterator_t<OR>> uninitialized_copy(IR&& input_range, OR&& output_range); template<class I, class O> using uninitialized_copy_n_result = uninitialized_copy_result<I, O>; template<InputIterator I, __NoThrowForwardIterator O, __NoThrowSentinel<O> S> requires Constructible<iter_value_t<O>, iter_reference_t<I>> uninitialized_copy_n_result<I, O> uninitialized_copy_n(I ifirst, iter_difference_t<I> n, O ofirst, S olast); } template<class InputIt, class ForwardIt> ForwardIt uninitialized_move(InputIt first, InputIt last, ForwardIt result); template<class ExecutionPolicy, class InputIt, class ForwardIt> ForwardIt uninitialized_move(ExecutionPolicy&& exec, InputIt first, InputIt last, ForwardIt result); template<class InputIt, class Size, class ForwardIt> pair<InputIt, ForwardIt> uninitialized_move_n(InputIt first, Size n, ForwardIt result); template<class ExecutionPolicy, class InputIt, class Size, class ForwardIt> pair<InputIt, ForwardIt> uninitialized_move_n(ExecutionPolicy&& exec, InputIt first, Size n, ForwardIt result); namespace ranges { template<class I, class O> using uninitialized_move_result = uninitialized_copy_result<I, O>; template<InputIterator I, Sentinel<I> S1, __NoThrowForwardIterator O, __NoThrowSentinel<O> S2> requires Constructible<iter_value_t<O>, iter_rvalue_reference_t<I>> uninitialized_move_result<I, O> uninitialized_move(I ifirst, S1 ilast, O ofirst, S2 olast); template<InputRange IR, __NoThrowForwardRange OR> requires Constructible<iter_value_t<iterator_t<OR>>, iter_rvalue_reference_t<iterator_t<IR>>> uninitialized_move_result<safe_iterator_t<IR>, safe_iterator_t<OR>> uninitialized_move(IR&& input_range, OR&& output_range); template<class I, class O> using uninitialized_move_n_result = uninitialized_copy_result<I, O>; template<InputIterator I, __NoThrowForwardIterator O, __NoThrowSentinel<O> S> requires Constructible<iter_value_t<O>, iter_rvalue_reference_t<I>> uninitialized_move_n_result<I, O> uninitialized_move_n(I ifirst, iter_difference_t<I> n, O ofirst, S olast); } template<class ForwardIt, class T> void uninitialized_fill(ForwardIt first, ForwardIt last, const T& x); template<class ExecutionPolicy, class ForwardIt, class T> void uninitialized_fill(ExecutionPolicy&& exec, ForwardIt first, ForwardIt last, const T& x); template<class ForwardIt, class Size, class T> ForwardIt uninitialized_fill_n(ForwardIt first, Size n, const T& x); template<class ExecutionPolicy, class ForwardIt, class Size, class T> ForwardIt uninitialized_fill_n(ExecutionPolicy&& exec, ForwardIt first, Size n, const T& x); namespace ranges { template<__NoThrowForwardIterator I, __NoThrowSentinel<I> S, class T> requires Constructible<iter_value_t<I>, const T&> I uninitialized_fill(I first, S last, const T& x); template<__NoThrowForwardRange R, class T> requires Constructible<iter_value_t<iterator_t<R>>, const T&> safe_iterator_t<R> uninitialized_fill(R&& r, const T& x); template<__NoThrowForwardIterator I, class T> requires Constructible<iter_value_t<I>, const T&> I uninitialized_fill_n(I first, iter_difference_t<I> n, const T& x); } template<class T> void destroy_at(T* location); template<class ForwardIt> void destroy(ForwardIt first, ForwardIt last); template<class ExecutionPolicy, class ForwardIt> void destroy(ExecutionPolicy&& exec, ForwardIt first, ForwardIt last); template<class ForwardIt, class Size> ForwardIt destroy_n(ForwardIt first, Size n); template<class ExecutionPolicy, class ForwardIt, class Size> ForwardIt destroy_n(ExecutionPolicy&& exec, ForwardIt first, Size n); namespace ranges { template<Destructible T> void destroy_at(T* location) noexcept; template<__NoThrowInputIterator I, __NoThrowSentinel<I> S> requires Destructible<iter_value_t<I>> I destroy(I first, S last) noexcept; template<__NoThrowInputRange R> requires Destructible<iter_value_t<iterator_t<R>> safe_iterator_t<R> destroy(R&& r) noexcept; template<__NoThrowInputIterator I> requires Destructible<iter_value_t<I>> I destroy_n(I first, iter_difference_t<I> n) noexcept; } // class template unique_ptr template<class T> struct default_delete; template<class T> struct default_delete<T[]>; template<class T, class D = default_delete<T>> class unique_ptr; template<class T, class D> class unique_ptr<T[], D>; template<class T, class... Args> unique_ptr<T> make_unique(Args&&... args); // T is not array template<class T> unique_ptr<T> make_unique(size_t n); // T is U[] template<class T, class... Args> /* unspecified */ make_unique(Args&&...) = delete; // T is U[N] template<class T> unique_ptr<T> make_unique_default_init(); // T is not array template<class T> unique_ptr<T> make_unique_default_init(size_t n); // T is U[] template<class T, class... Args> /* unspecified */ make_unique_default_init(Args&&...) = delete; // T is U[N] template<class T, class D> void swap(unique_ptr<T, D>& x, unique_ptr<T, D>& y) noexcept; template<class T1, class D1, class T2, class D2> bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template<class T1, class D1, class T2, class D2> bool operator!=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template<class T1, class D1, class T2, class D2> bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template<class T1, class D1, class T2, class D2> bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template<class T1, class D1, class T2, class D2> bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template<class T1, class D1, class T2, class D2> bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template<class T, class D> bool operator==(const unique_ptr<T, D>& x, nullptr_t) noexcept; template<class T, class D> bool operator==(nullptr_t, const unique_ptr<T, D>& y) noexcept; template<class T, class D> bool operator!=(const unique_ptr<T, D>& x, nullptr_t) noexcept; template<class T, class D> bool operator!=(nullptr_t, const unique_ptr<T, D>& y) noexcept; template<class T, class D> bool operator<(const unique_ptr<T, D>& x, nullptr_t); template<class T, class D> bool operator<(nullptr_t, const unique_ptr<T, D>& y); template<class T, class D> bool operator>(const unique_ptr<T, D>& x, nullptr_t); template<class T, class D> bool operator>(nullptr_t, const unique_ptr<T, D>& y); template<class T, class D> bool operator<=(const unique_ptr<T, D>& x, nullptr_t); template<class T, class D> bool operator<=(nullptr_t, const unique_ptr<T, D>& y); template<class T, class D> bool operator>=(const unique_ptr<T, D>& x, nullptr_t); template<class T, class D> bool operator>=(nullptr_t, const unique_ptr<T, D>& y); template<class E, class T, class Y, class D> basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const unique_ptr<Y, D>& p); // class bad_weak_ptr class bad_weak_ptr; // class template shared_ptr template<class T> class shared_ptr; // shared_ptr creation template<class T, class... Args> shared_ptr<T> make_shared(Args&&... args); // T is not array template<class T, class A, class... Args> shared_ptr<T> allocate_shared(const A& a, Args&&... args); // T is not array template<class T> shared_ptr<T> make_shared(size_t N); // T is U[] template<class T, class A> shared_ptr<T> allocate_shared(const A& a, size_t N); // T is U[] template<class T> shared_ptr<T> make_shared(); // T is U[N] template<class T, class A> shared_ptr<T> allocate_shared(const A& a); // T is U[N] template<class T> shared_ptr<T> make_shared(size_t N, const remove_extent_t<T>& u); // T is U[] template<class T, class A> shared_ptr<T> allocate_shared(const A& a, size_t N, const remove_extent_t<T>& u); // T is U[] template<class T> shared_ptr<T> make_shared(const remove_extent_t<T>& u); // T is U[N] template<class T, class A> shared_ptr<T> allocate_shared(const A& a, const remove_extent_t<T>& u); // T is U[N] template<class T> shared_ptr<T> make_shared_default_init(); // T is not U[] template<class T, class A> shared_ptr<T> allocate_shared_default_init(const A& a); // T is not U[] template<class T> shared_ptr<T> make_shared_default_init(size_t N); // T is U[] template<class T, class A> shared_ptr<T> allocate_shared_default_init(const A& a, size_t N); // T is U[] // shared_ptr comparisons template<class T, class U> bool operator==(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> bool operator!=(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> bool operator<(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> bool operator>(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> bool operator<=(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> bool operator>=(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T> bool operator==(const shared_ptr<T>& x, nullptr_t) noexcept; template<class T> bool operator==(nullptr_t, const shared_ptr<T>& y) noexcept; template<class T> bool operator!=(const shared_ptr<T>& x, nullptr_t) noexcept; template<class T> bool operator!=(nullptr_t, const shared_ptr<T>& y) noexcept; template<class T> bool operator<(const shared_ptr<T>& x, nullptr_t) noexcept; template<class T> bool operator<(nullptr_t, const shared_ptr<T>& y) noexcept; template<class T> bool operator>(const shared_ptr<T>& x, nullptr_t) noexcept; template<class T> bool operator>(nullptr_t, const shared_ptr<T>& y) noexcept; template<class T> bool operator<=(const shared_ptr<T>& x, nullptr_t) noexcept; template<class T> bool operator<=(nullptr_t, const shared_ptr<T>& y) noexcept; template<class T> bool operator>=(const shared_ptr<T>& x, nullptr_t) noexcept; template<class T> bool operator>=(nullptr_t, const shared_ptr<T>& y) noexcept; // shared_ptr specialized algorithms template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>& b) noexcept; // shared_ptr casts template<class T, class U> shared_ptr<T> static_pointer_cast(const shared_ptr<U>& r) noexcept; template<class T, class U> shared_ptr<T> static_pointer_cast(shared_ptr<U>&& r) noexcept; template<class T, class U> shared_ptr<T> dynamic_pointer_cast(const shared_ptr<U>& r) noexcept; template<class T, class U> shared_ptr<T> dynamic_pointer_cast(shared_ptr<U>&& r) noexcept; template<class T, class U> shared_ptr<T> const_pointer_cast(const shared_ptr<U>& r) noexcept; template<class T, class U> shared_ptr<T> const_pointer_cast(shared_ptr<U>&& r) noexcept; template<class T, class U> shared_ptr<T> reinterpret_pointer_cast(const shared_ptr<U>& r) noexcept; template<class T, class U> shared_ptr<T> reinterpret_pointer_cast(shared_ptr<U>&& r) noexcept; // shared_ptr get_deleter template<class D, class T> D* get_deleter(const shared_ptr<T>& p) noexcept; // shared_ptr I/O template<class E, class T, class Y> basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const shared_ptr<Y>& p); // class template weak_ptr template<class T> class weak_ptr; // weak_ptr specialized algorithms template<class T> void swap(weak_ptr<T>& a, weak_ptr<T>& b) noexcept; // class template owner_less template<class T = void> struct owner_less; // class template enable_shared_from_this template<class T> class enable_shared_from_this; // hash support template<class T> struct hash; template<class T, class D> struct hash<unique_ptr<T, D>>; template<class T> struct hash<shared_ptr<T>>; // atomic smart pointers template<class T> struct atomic; template<class T> struct atomic<shared_ptr<T>>; template<class T> struct atomic<weak_ptr<T>>; // shared_ptr atomic access template<class T> bool atomic_is_lock_free(const shared_ptr<T>* p); template<class T> shared_ptr<T> atomic_load(const shared_ptr<T>* p); template<class T> shared_ptr<T> atomic_load_explicit(const shared_ptr<T>* p, memory_order mo); template<class T> void atomic_store(shared_ptr<T>* p, shared_ptr<T> r); template<class T> void atomic_store_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo); template<class T> shared_ptr<T> atomic_exchange(shared_ptr<T>* p, shared_ptr<T> r); template<class T> shared_ptr<T> atomic_exchange_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo); template<class T> bool atomic_compare_exchange_weak(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w); template<class T> bool atomic_compare_exchange_strong(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w); template<class T> bool atomic_compare_exchange_weak_explicit(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w, memory_order success, memory_order failure); template<class T> bool atomic_compare_exchange_strong_explicit(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w, memory_order success, memory_order failure); }
Helper concepts
template<class I> concept __NoThrowInputIterator = // exposition only InputIterator<I> && is_lvalue_reference_v<iter_reference_t<I>> && Same<remove_cvref_t<iter_reference_t<I>>, iter_value_t<I>>; template<class S, class I> concept __NoThrowSentinel = Sentinel<S, I>; // exposition only template<class R> concept __NoThrowInputRange = // exposition only Range<R> && __NoThrowInputIterator<iterator_t<R>> && __NoThrowSentinel<sentinel_t<R>, iterator_t<R>>; template<class I> concept __NoThrowForwardIterator = // exposition only __NoThrowInputIterator<I> && ForwardIterator<I> && __NoThrowSentinel<I, I>; template<class R> concept __NoThrowForwardRange = // exposition only __NoThrowInputRange<R> && __NoThrowForwardIterator<iterator_t<R>>;
Note: These names are only for exposition, they are not part of the interface.
Class template std::pointer_traits
namespace std { template <class Ptr> struct pointer_traits { using pointer = Ptr; using element_type = /* see definition */; using difference_type = /* see definition */; template <class U> using rebind = /* see definition */; static pointer pointer_to(/* see definition */ r); }; template <class T> struct pointer_traits<T*> { using pointer = T*; using element_type = T; using difference_type = ptrdiff_t; template <class U> using rebind = U*; static constexpr pointer pointer_to(/* see definition */ r) noexcept; }; }
Class std::allocator_arg_t
namespace std { struct allocator_arg_t { explicit allocator_arg_t() = default; }; inline constexpr allocator_arg_t allocator_arg{}; }
Class template std::allocator_traits
namespace std { template<class Alloc> struct allocator_traits { using allocator_type = Alloc; using value_type = typename Alloc::value_type; using pointer = /* see definition */; using const_pointer = /* see definition */; using void_pointer = /* see definition */; using const_void_pointer = /* see definition */; using difference_type = /* see definition */; using size_type = /* see definition */; using propagate_on_container_copy_assignment = /* see definition */; using propagate_on_container_move_assignment = /* see definition */; using propagate_on_container_swap = /* see definition */; using is_always_equal = /* see definition */; template<class T> using rebind_alloc = /* see definition */; template<class T> using rebind_traits = allocator_traits<rebind_alloc<T>>; [[nodiscard]] static pointer allocate(Alloc& a, size_type n); [[nodiscard]] static pointer allocate(Alloc& a, size_type n, const_void_pointer hint); static void deallocate(Alloc& a, pointer p, size_type n); template<class T, class... Args> static void construct(Alloc& a, T* p, Args&&... args); template<class T> static void destroy(Alloc& a, T* p); static size_type max_size(const Alloc& a) noexcept; static Alloc select_on_container_copy_construction(const Alloc& rhs); }; }
Class template std::allocator
namespace std { template<class T> class allocator { public: using value_type = T; using size_type = size_t; using difference_type = ptrdiff_t; using propagate_on_container_move_assignment = true_type; using is_always_equal = true_type; constexpr allocator() noexcept; constexpr allocator(const allocator&) noexcept; template<class U> constexpr allocator(const allocator<U>&) noexcept; ~allocator(); allocator& operator=(const allocator&) = default; [[nodiscard]] T* allocate(size_t n); void deallocate(T* p, size_t n); }; }
Class template std::default_delete
namespace std { template<class T> struct default_delete { constexpr default_delete() noexcept = default; template<class U> default_delete(const default_delete<U>&) noexcept; void operator()(T*) const; }; template<class T> struct default_delete<T[]> { constexpr default_delete() noexcept = default; template<class U> default_delete(const default_delete<U[]>&) noexcept; template<class U> void operator()(U* ptr) const; }; }
Class template std::unique_ptr
namespace std { template<class T, class D = default_delete<T>> class unique_ptr { public: using pointer = /* see definition */; using element_type = T; using deleter_type = D; // constructors constexpr unique_ptr() noexcept; explicit unique_ptr(pointer p) noexcept; unique_ptr(pointer p, /* see definition */ d1) noexcept; unique_ptr(pointer p, /* see definition */ d2) noexcept; unique_ptr(unique_ptr&& u) noexcept; constexpr unique_ptr(nullptr_t) noexcept; template<class U, class E> unique_ptr(unique_ptr<U, E>&& u) noexcept; // destructor ~unique_ptr(); // assignment unique_ptr& operator=(unique_ptr&& u) noexcept; template<class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept; unique_ptr& operator=(nullptr_t) noexcept; // observers add_lvalue_reference_t<T> operator*() const; pointer operator->() const noexcept; pointer get() const noexcept; deleter_type& get_deleter() noexcept; const deleter_type& get_deleter() const noexcept; explicit operator bool() const noexcept; // modifiers pointer release() noexcept; void reset(pointer p = pointer()) noexcept; void swap(unique_ptr& u) noexcept; // disable copy from lvalue unique_ptr(const unique_ptr&) = delete; unique_ptr& operator=(const unique_ptr&) = delete; }; template<class T, class D> class unique_ptr<T[], D> { public: using pointer = /* see definition */; using element_type = T; using deleter_type = D; // constructors constexpr unique_ptr() noexcept; template<class U> explicit unique_ptr(U p) noexcept; template<class U> unique_ptr(U p, /* see definition */ d) noexcept; template<class U> unique_ptr(U p, /* see definition */ d) noexcept; unique_ptr(unique_ptr&& u) noexcept; template<class U, class E> unique_ptr(unique_ptr<U, E>&& u) noexcept; constexpr unique_ptr(nullptr_t) noexcept; // destructor ~unique_ptr(); // assignment unique_ptr& operator=(unique_ptr&& u) noexcept; template<class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept; unique_ptr& operator=(nullptr_t) noexcept; // observers T& operator[](size_t i) const; pointer get() const noexcept; deleter_type& get_deleter() noexcept; const deleter_type& get_deleter() const noexcept; explicit operator bool() const noexcept; // modifiers pointer release() noexcept; template<class U> void reset(U p) noexcept; void reset(nullptr_t = nullptr) noexcept; void swap(unique_ptr& u) noexcept; // disable copy from lvalue unique_ptr(const unique_ptr&) = delete; unique_ptr& operator=(const unique_ptr&) = delete; }; }
Class std::bad_weak_ptr
namespace std { class bad_weak_ptr : public exception { public: bad_weak_ptr() noexcept; }; }
Class template std::shared_ptr
namespace std { template<class T> class shared_ptr { public: using element_type = remove_extent_t<T>; using weak_type = weak_ptr<T>; // constructors constexpr shared_ptr() noexcept; constexpr shared_ptr(nullptr_t) noexcept : shared_ptr() { } template<class Y> explicit shared_ptr(Y* p); template<class Y, class D> shared_ptr(Y* p, D d); template<class Y, class D, class A> shared_ptr(Y* p, D d, A a); template<class D> shared_ptr(nullptr_t p, D d); template<class D, class A> shared_ptr(nullptr_t p, D d, A a); template<class Y> shared_ptr(const shared_ptr<Y>& r, element_type* p) noexcept; template<class Y> shared_ptr(shared_ptr<Y>&& r, element_type* p) noexcept; shared_ptr(const shared_ptr& r) noexcept; template<class Y> shared_ptr(const shared_ptr<Y>& r) noexcept; shared_ptr(shared_ptr&& r) noexcept; template<class Y> shared_ptr(shared_ptr<Y>&& r) noexcept; template<class Y> explicit shared_ptr(const weak_ptr<Y>& r); template<class Y, class D> shared_ptr(unique_ptr<Y, D>&& r); // destructor ~shared_ptr(); // assignment shared_ptr& operator=(const shared_ptr& r) noexcept; template<class Y> shared_ptr& operator=(const shared_ptr<Y>& r) noexcept; shared_ptr& operator=(shared_ptr&& r) noexcept; template<class Y> shared_ptr& operator=(shared_ptr<Y>&& r) noexcept; template<class Y, class D> shared_ptr& operator=(unique_ptr<Y, D>&& r); // modifiers void swap(shared_ptr& r) noexcept; void reset() noexcept; template<class Y> void reset(Y* p); template<class Y, class D> void reset(Y* p, D d); template<class Y, class D, class A> void reset(Y* p, D d, A a); // observers element_type* get() const noexcept; T& operator*() const noexcept; T* operator->() const noexcept; element_type& operator[](ptrdiff_t i) const; long use_count() const noexcept; explicit operator bool() const noexcept; template<class U> bool owner_before(const shared_ptr<U>& b) const noexcept; template<class U> bool owner_before(const weak_ptr<U>& b) const noexcept; }; template<class T> shared_ptr(weak_ptr<T>) -> shared_ptr<T>; template<class T, class D> shared_ptr(unique_ptr<T, D>) -> shared_ptr<T>; }
Class template std::weak_ptr
namespace std { template<class T> class weak_ptr { public: using element_type = remove_extent_t<T>; // constructors constexpr weak_ptr() noexcept; template<class Y> weak_ptr(const shared_ptr<Y>& r) noexcept; weak_ptr(const weak_ptr& r) noexcept; template<class Y> weak_ptr(const weak_ptr<Y>& r) noexcept; weak_ptr(weak_ptr&& r) noexcept; template<class Y> weak_ptr(weak_ptr<Y>&& r) noexcept; // destructor ~weak_ptr(); // assignment weak_ptr& operator=(const weak_ptr& r) noexcept; template<class Y> weak_ptr& operator=(const weak_ptr<Y>& r) noexcept; template<class Y> weak_ptr& operator=(const shared_ptr<Y>& r) noexcept; weak_ptr& operator=(weak_ptr&& r) noexcept; template<class Y> weak_ptr& operator=(weak_ptr<Y>&& r) noexcept; // modifiers void swap(weak_ptr& r) noexcept; void reset() noexcept; // observers long use_count() const noexcept; bool expired() const noexcept; shared_ptr<T> lock() const noexcept; template<class U> bool owner_before(const shared_ptr<U>& b) const noexcept; template<class U> bool owner_before(const weak_ptr<U>& b) const noexcept; }; template<class T> weak_ptr(shared_ptr<T>) -> weak_ptr<T>; }
Class template std::owner_less
namespace std { template<class T = void> struct owner_less; template<class T> struct owner_less<shared_ptr<T>> { bool operator()(const shared_ptr<T>&, const shared_ptr<T>&) const noexcept; bool operator()(const shared_ptr<T>&, const weak_ptr<T>&) const noexcept; bool operator()(const weak_ptr<T>&, const shared_ptr<T>&) const noexcept; }; template<class T> struct owner_less<weak_ptr<T>> { bool operator()(const weak_ptr<T>&, const weak_ptr<T>&) const noexcept; bool operator()(const shared_ptr<T>&, const weak_ptr<T>&) const noexcept; bool operator()(const weak_ptr<T>&, const shared_ptr<T>&) const noexcept; }; template<> struct owner_less<void> { template<class T, class U> bool operator()(const shared_ptr<T>&, const shared_ptr<U>&) const noexcept; template<class T, class U> bool operator()(const shared_ptr<T>&, const weak_ptr<U>&) const noexcept; template<class T, class U> bool operator()(const weak_ptr<T>&, const shared_ptr<U>&) const noexcept; template<class T, class U> bool operator()(const weak_ptr<T>&, const weak_ptr<U>&) const noexcept; using is_transparent = /* unspecified */; }; }
Class template std::enable_shared_from_this
namespace std { template<class T> class enable_shared_from_this { protected: constexpr enable_shared_from_this() noexcept; enable_shared_from_this(const enable_shared_from_this&) noexcept; enable_shared_from_this& operator=(const enable_shared_from_this&) noexcept; ~enable_shared_from_this(); public: shared_ptr<T> shared_from_this(); shared_ptr<T const> shared_from_this() const; weak_ptr<T> weak_from_this() noexcept; weak_ptr<T const> weak_from_this() const noexcept; private: mutable weak_ptr<T> weak_this; // exposition only }; }
Class template std::atomic
's specialization for std::shared_ptr
namespace std { template<class T> struct atomic<shared_ptr<T>> { using value_type = shared_ptr<T>; static constexpr bool is_always_lock_free = /* implementation-defined */; bool is_lock_free() const noexcept; void store(shared_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; shared_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept; operator shared_ptr<T>() const noexcept; shared_ptr<T> exchange(shared_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; bool compare_exchange_weak(shared_ptr<T>& expected, shared_ptr<T> desired, memory_order success, memory_order failure) noexcept; bool compare_exchange_strong(shared_ptr<T>& expected, shared_ptr<T> desired, memory_order success, memory_order failure) noexcept; bool compare_exchange_weak(shared_ptr<T>& expected, shared_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; bool compare_exchange_strong(shared_ptr<T>& expected, shared_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; constexpr atomic() noexcept = default; atomic(shared_ptr<T> desired) noexcept; atomic(const atomic&) = delete; void operator=(const atomic&) = delete; void operator=(shared_ptr<T> desired) noexcept; private: shared_ptr<T> p; // exposition only }; }
Class template std::atomic
's specialization for std::weak_ptr
namespace std { template<class T> struct atomic<weak_ptr<T>> { using value_type = weak_ptr<T>; static constexpr bool is_always_lock_free = /* implementation-defined */; bool is_lock_free() const noexcept; void store(weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; weak_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept; operator weak_ptr<T>() const noexcept; weak_ptr<T> exchange(weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired, memory_order success, memory_order failure) noexcept; bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired, memory_order success, memory_order failure) noexcept; bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; constexpr atomic() noexcept = default; atomic(weak_ptr<T> desired) noexcept; atomic(const atomic&) = delete; void operator=(const atomic&) = delete; void operator=(weak_ptr<T> desired) noexcept; private: weak_ptr<T> p; // exposition only }; }
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/header/memory