Standard library header <memory>
This header is part of the dynamic memory management library.
Classes |
|
Pointer traits |
|
|
(C++11) | provides information about pointer-like types (class template) |
Garbage collector support |
|
|
(C++11) | lists pointer safety models (enum) |
Allocators |
|
| the default allocator (class template) |
|
|
(C++11) | provides information about allocator types (class template) |
|
(C++11) | tag type used to select allocator-aware constructor overloads (class) |
|
(C++11) | an object of type std::allocator_arg_t used to select allocator-aware constructors (constant) |
|
(C++11) | checks if the specified type supports uses-allocator construction (class template) |
Uninitialized storage |
|
|
(deprecated in C++17)(removed in C++20) | an iterator that allows standard algorithms to store results in uninitialized memory (class template) |
Smart pointers |
|
|
(C++11) | smart pointer with unique object ownership semantics (class template) |
|
(C++11) | smart pointer with shared object ownership semantics (class template) |
|
(C++11) | weak reference to an object managed by std::shared_ptr (class template) |
|
(removed in C++17) | smart pointer with strict object ownership semantics (class template) |
Helper classes |
|
|
(C++20) | atomic shared pointer (class template specialization) |
|
(C++20) | atomic weak pointer (class template specialization) |
|
(C++11) | provides mixed-type owner-based ordering of shared and weak pointers (class template) |
|
(C++11) | allows an object to create a shared_ptr referring to itself (class template) |
|
(C++11) | exception thrown when accessing a weak_ptr which refers to already destroyed object (class) |
|
(C++11) | default deleter for unique_ptr (class template) |
|
(C++11) | hash support for std::unique_ptr (class template specialization) |
|
(C++11) | hash support for std::shared_ptr (class template specialization) |
Functions |
|
Miscellaneous |
|
|
(C++20) | obtains a raw pointer from a pointer-like type (function template) |
|
(C++11) | obtains actual address of an object, even if the & operator is overloaded (function template) |
|
(C++11) | aligns a pointer in a buffer (function) |
|
(C++20) | informs the compiler that a pointer is aligned (function template) |
Garbage collector support |
|
|
(C++11) | declares that an object can not be recycled (function) |
|
(C++11) | declares that an object can be recycled (function template) |
|
(C++11) | declares that a memory area does not contain traceable pointers (function) |
|
(C++11) | cancels the effect of std::declare_no_pointers (function) |
|
(C++11) | returns the current pointer safety model (function) |
Uninitialized storage |
|
| copies a range of objects to an uninitialized area of memory (function template) |
|
|
(C++11) | copies a number of objects to an uninitialized area of memory (function template) |
| copies an object to an uninitialized area of memory, defined by a range (function template) |
|
| copies an object to an uninitialized area of memory, defined by a start and a count (function template) |
|
|
(C++17) | moves a range of objects to an uninitialized area of memory (function template) |
|
(C++17) | moves a number of objects to an uninitialized area of memory (function template) |
|
(C++17) | constructs objects by default-initialization in an uninitialized area of memory, defined by a range (function template) |
|
(C++17) | constructs objects by default-initialization in an uninitialized area of memory, defined by a start and a count (function template) |
|
(C++17) | constructs objects by value-initialization in an uninitialized area of memory, defined by a range (function template) |
|
(C++17) | constructs objects by value-initialization in an uninitialized area of memory, defined by a start and a count (function template) |
|
(C++17) | destroys an object at a given address (function template) |
|
(C++17) | destroys a range of objects (function template) |
|
(C++17) | destroys a number of objects in a range (function template) |
|
(deprecated in C++17)(removed in C++20) | obtains uninitialized storage (function template) |
|
(deprecated in C++17)(removed in C++20) | frees uninitialized storage (function template) |
Smart pointer non-member operations |
|
|
(C++14)(C++20) | creates a unique pointer that manages a new object (function template) |
compares to another unique_ptr or with nullptr (function template) |
|
|
(C++20) | creates a shared pointer that manages a new object (function template) |
|
(C++20) | creates a shared pointer that manages a new object allocated using an allocator (function template) |
|
(C++17) | applies static_cast, dynamic_cast, const_cast, or reinterpret_cast to the stored pointer (function template) |
| returns the deleter of specified type, if owned (function template) |
|
compares with another shared_ptr or with nullptr (function template) |
|
| outputs the value of the stored pointer to an output stream (function template) |
|
|
(C++11) | specializes the std::swap algorithm (function template) |
|
(C++11) | specializes the std::swap algorithm (function template) |
|
(C++11) | specializes the std::swap algorithm (function template) |
|
(deprecated in C++20) | specializes atomic operations for std::shared_ptr (function template) |
Niebloids |
|
Defined in namespace std::ranges |
|
|---|---|
Uninitialized storage |
|
|
(C++20) | copies a range of objects to an uninitialized area of memory (niebloid) |
|
(C++20) | copies a number of objects to an uninitialized area of memory (niebloid) |
|
(C++20) | copies an object to an uninitialized area of memory, defined by a range (niebloid) |
|
(C++20) | copies an object to an uninitialized area of memory, defined by a start and a count (niebloid) |
|
(C++20) | moves a range of objects to an uninitialized area of memory (niebloid) |
|
(C++20) | moves a number of objects to an uninitialized area of memory (niebloid) |
|
(C++20) | constructs objects by default-initialization in an uninitialized area of memory, defined by a range (niebloid) |
|
(C++20) | constructs objects by default-initialization in an uninitialized area of memory, defined by a start and count (niebloid) |
|
(C++20) | constructs objects by value-initialization in an uninitialized area of memory, defined by a range (niebloid) |
|
(C++20) | constructs objects by value-initialization in an uninitialized area of memory, defined by a start and a count (niebloid) |
|
(C++20) | destroys an object at a given address (niebloid) |
|
(C++20) | destroys a range of objects (niebloid) |
|
(C++20) | destroys a number of objects in a range (niebloid) |
Synopsis
namespace std {
// pointer traits
template<class Ptr> struct pointer_traits;
template<class T> struct pointer_traits<T*>;
// pointer conversion
template<class T>
constexpr T* to_address(T* p) noexcept;
template<class Ptr>
auto to_address(const Ptr& p) noexcept;
// pointer safety
enum class pointer_safety { relaxed, preferred, strict };
void declare_reachable(void* p);
template<class T>
T* undeclare_reachable(T* p);
void declare_no_pointers(char* p, size_t n);
void undeclare_no_pointers(char* p, size_t n);
pointer_safety get_pointer_safety() noexcept;
// pointer alignment
void* align(size_t alignment, size_t size, void*& ptr, size_t& space);
template<size_t N, class T>
[[nodiscard]] constexpr T* assume_aligned(T* ptr);
// allocator argument tag
struct allocator_arg_t { explicit allocator_arg_t() = default; };
inline constexpr allocator_arg_t allocator_arg{};
// uses_allocator
template<class T, class Alloc> struct uses_allocator;
// uses_allocator
template<class T, class Alloc>
inline constexpr bool uses_allocator_v = uses_allocator<T, Alloc>::value;
// uses-allocator construction
template<class T, class Alloc, class... Args>
auto uses_allocator_construction_args(const Alloc& alloc, Args&&... args)
-> /* see definition */;
template<class T, class Alloc, class Tuple1, class Tuple2>
auto uses_allocator_construction_args(const Alloc& alloc, piecewise_construct_t,
Tuple1&& x, Tuple2&& y)
-> /* see definition */;
template<class T, class Alloc>
auto uses_allocator_construction_args(const Alloc& alloc) -> /* see definition */;
template<class T, class Alloc, class U, class V>
auto uses_allocator_construction_args(const Alloc& alloc, U&& u, V&& v)
-> /* see definition */;
template<class T, class Alloc, class U, class V>
auto uses_allocator_construction_args(const Alloc& alloc, const pair<U,V>& pr)
-> /* see definition */;
template<class T, class Alloc, class U, class V>
auto uses_allocator_construction_args(const Alloc& alloc, pair<U,V>&& pr)
-> /* see definition */;
template<class T, class Alloc, class... Args>
T make_obj_using_allocator(const Alloc& alloc, Args&&... args);
template<class T, class Alloc, class... Args>
T* uninitialized_construct_using_allocator(T* p, const Alloc& alloc, Args&&... args);
// allocator traits
template<class Alloc> struct allocator_traits;
// the default allocator
template<class T> class allocator;
template<class T, class U>
bool operator==(const allocator<T>&, const allocator<U>&) noexcept;
template<class T, class U>
bool operator!=(const allocator<T>&, const allocator<U>&) noexcept;
// specialized algorithms
// special memory concepts
template<class I>
concept __NoThrowInputIterator = /* see definition */; // exposition only
template<class I>
concept __NoThrowForwardIterator = /* see definition */; // exposition only
template<class S, class I>
concept __NoThrowSentinel = /* see definition */; // exposition only
template<class R>
concept __NoThrowInputRange = /* see definition */; // exposition only
template<class R>
concept __NoThrowForwardRange = /* see definition */; // exposition only
template<class T>
constexpr T* addressof(T& r) noexcept;
template<class T>
const T* addressof(const T&&) = delete;
template<class ForwardIt>
void uninitialized_default_construct(ForwardIt first, ForwardIt last);
template<class ExecutionPolicy, class ForwardIt>
void uninitialized_default_construct(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last);
template<class ForwardIt, class Size>
ForwardIt uninitialized_default_construct_n(ForwardIt first, Size n);
template<class ExecutionPolicy, class ForwardIt, class Size>
ForwardIt uninitialized_default_construct_n(ExecutionPolicy&& exec,
ForwardIt first, Size n);
namespace ranges {
template<__NoThrowForwardIterator I, __NoThrowSentinel<I> S>
requires DefaultConstructible<iter_value_t<I>>
I uninitialized_default_construct(I first, S last);
template<__NoThrowForwardRange R>
requires DefaultConstructible<iter_value_t<iterator_t<R>>>
safe_iterator_t<R> uninitialized_default_construct(R&& r);
template<__NoThrowForwardIterator I>
requires DefaultConstructible<iter_value_t<I>>
I uninitialized_default_construct_n(I first, iter_difference_t<I> n);
}
template<class ForwardIt>
void uninitialized_value_construct(ForwardIt first, ForwardIt last);
template<class ExecutionPolicy, class ForwardIt>
void uninitialized_value_construct(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last);
template<class ForwardIt, class Size>
ForwardIt uninitialized_value_construct_n(ForwardIt first, Size n);
template<class ExecutionPolicy, class ForwardIt, class Size>
ForwardIt uninitialized_value_construct_n(ExecutionPolicy&& exec,
ForwardIt first, Size n);
namespace ranges {
template<__NoThrowForwardIterator I, __NoThrowSentinel<I> S>
requires DefaultConstructible<iter_value_t<I>>
I uninitialized_value_construct(I first, S last);
template<__NoThrowForwardRange R>
requires DefaultConstructible<iter_value_t<iterator_t<R>>>
safe_iterator_t<R> uninitialized_value_construct(R&& r);
template<__NoThrowForwardIterator I>
requires DefaultConstructible<iter_value_t<I>>
I uninitialized_value_construct_n(I first, iter_difference_t<I> n);
}
template<class InputIt, class ForwardIt>
ForwardIt uninitialized_copy(InputIt first, InputIt last, ForwardIt result);
template<class ExecutionPolicy, class InputIt, class ForwardIt>
ForwardIt uninitialized_copy(ExecutionPolicy&& exec,
InputIt first, InputIt last, ForwardIt result);
template<class InputIt, class Size, class ForwardIt>
ForwardIt uninitialized_copy_n(InputIt first, Size n, ForwardIt result);
template<class ExecutionPolicy, class InputIt, class Size, class ForwardIt>
ForwardIt uninitialized_copy_n(ExecutionPolicy&& exec,
InputIt first, Size n, ForwardIt result);
namespace ranges {
template<class I, class O>
using uninitialized_copy_result = copy_result<I, O>;
template<InputIterator I, Sentinel<I> S1,
__NoThrowForwardIterator O, __NoThrowSentinel<O> S2>
requires Constructible<iter_value_t<O>, iter_reference_t<I>>
uninitialized_copy_result<I, O>
uninitialized_copy(I ifirst, S1 ilast, O ofirst, S2 olast);
template<InputRange IR, __NoThrowForwardRange OR>
requires
Constructible<iter_value_t<iterator_t<OR>>, iter_reference_t<iterator_t<IR>>>
uninitialized_copy_result<safe_iterator_t<IR>, safe_iterator_t<OR>>
uninitialized_copy(IR&& input_range, OR&& output_range);
template<class I, class O>
using uninitialized_copy_n_result = uninitialized_copy_result<I, O>;
template<InputIterator I, __NoThrowForwardIterator O, __NoThrowSentinel<O> S>
requires Constructible<iter_value_t<O>, iter_reference_t<I>>
uninitialized_copy_n_result<I, O>
uninitialized_copy_n(I ifirst, iter_difference_t<I> n, O ofirst, S olast);
}
template<class InputIt, class ForwardIt>
ForwardIt uninitialized_move(InputIt first, InputIt last, ForwardIt result);
template<class ExecutionPolicy, class InputIt, class ForwardIt>
ForwardIt uninitialized_move(ExecutionPolicy&& exec,
InputIt first, InputIt last, ForwardIt result);
template<class InputIt, class Size, class ForwardIt>
pair<InputIt, ForwardIt> uninitialized_move_n(InputIt first, Size n,
ForwardIt result);
template<class ExecutionPolicy, class InputIt, class Size, class ForwardIt>
pair<InputIt, ForwardIt> uninitialized_move_n(ExecutionPolicy&& exec,
InputIt first, Size n,
ForwardIt result);
namespace ranges {
template<class I, class O>
using uninitialized_move_result = uninitialized_copy_result<I, O>;
template<InputIterator I, Sentinel<I> S1,
__NoThrowForwardIterator O, __NoThrowSentinel<O> S2>
requires Constructible<iter_value_t<O>, iter_rvalue_reference_t<I>>
uninitialized_move_result<I, O>
uninitialized_move(I ifirst, S1 ilast, O ofirst, S2 olast);
template<InputRange IR, __NoThrowForwardRange OR>
requires Constructible<iter_value_t<iterator_t<OR>>,
iter_rvalue_reference_t<iterator_t<IR>>>
uninitialized_move_result<safe_iterator_t<IR>, safe_iterator_t<OR>>
uninitialized_move(IR&& input_range, OR&& output_range);
template<class I, class O>
using uninitialized_move_n_result = uninitialized_copy_result<I, O>;
template<InputIterator I,
__NoThrowForwardIterator O, __NoThrowSentinel<O> S>
requires Constructible<iter_value_t<O>, iter_rvalue_reference_t<I>>
uninitialized_move_n_result<I, O>
uninitialized_move_n(I ifirst, iter_difference_t<I> n, O ofirst, S olast);
}
template<class ForwardIt, class T>
void uninitialized_fill(ForwardIt first, ForwardIt last, const T& x);
template<class ExecutionPolicy, class ForwardIt, class T>
void uninitialized_fill(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, const T& x);
template<class ForwardIt, class Size, class T>
ForwardIt uninitialized_fill_n(ForwardIt first, Size n, const T& x);
template<class ExecutionPolicy, class ForwardIt, class Size, class T>
ForwardIt uninitialized_fill_n(ExecutionPolicy&& exec,
ForwardIt first, Size n, const T& x);
namespace ranges {
template<__NoThrowForwardIterator I, __NoThrowSentinel<I> S, class T>
requires Constructible<iter_value_t<I>, const T&>
I uninitialized_fill(I first, S last, const T& x);
template<__NoThrowForwardRange R, class T>
requires Constructible<iter_value_t<iterator_t<R>>, const T&>
safe_iterator_t<R> uninitialized_fill(R&& r, const T& x);
template<__NoThrowForwardIterator I, class T>
requires Constructible<iter_value_t<I>, const T&>
I uninitialized_fill_n(I first, iter_difference_t<I> n, const T& x);
}
template<class T>
void destroy_at(T* location);
template<class ForwardIt>
void destroy(ForwardIt first, ForwardIt last);
template<class ExecutionPolicy, class ForwardIt>
void destroy(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last);
template<class ForwardIt, class Size>
ForwardIt destroy_n(ForwardIt first, Size n);
template<class ExecutionPolicy, class ForwardIt, class Size>
ForwardIt destroy_n(ExecutionPolicy&& exec,
ForwardIt first, Size n);
namespace ranges {
template<Destructible T>
void destroy_at(T* location) noexcept;
template<__NoThrowInputIterator I, __NoThrowSentinel<I> S>
requires Destructible<iter_value_t<I>>
I destroy(I first, S last) noexcept;
template<__NoThrowInputRange R>
requires Destructible<iter_value_t<iterator_t<R>>
safe_iterator_t<R> destroy(R&& r) noexcept;
template<__NoThrowInputIterator I>
requires Destructible<iter_value_t<I>>
I destroy_n(I first, iter_difference_t<I> n) noexcept;
}
// class template unique_ptr
template<class T> struct default_delete;
template<class T> struct default_delete<T[]>;
template<class T, class D = default_delete<T>> class unique_ptr;
template<class T, class D> class unique_ptr<T[], D>;
template<class T, class... Args>
unique_ptr<T> make_unique(Args&&... args); // T is not array
template<class T>
unique_ptr<T> make_unique(size_t n); // T is U[]
template<class T, class... Args>
/* unspecified */ make_unique(Args&&...) = delete; // T is U[N]
template<class T>
unique_ptr<T> make_unique_default_init(); // T is not array
template<class T>
unique_ptr<T> make_unique_default_init(size_t n); // T is U[]
template<class T, class... Args>
/* unspecified */ make_unique_default_init(Args&&...) = delete; // T is U[N]
template<class T, class D>
void swap(unique_ptr<T, D>& x, unique_ptr<T, D>& y) noexcept;
template<class T1, class D1, class T2, class D2>
bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
template<class T1, class D1, class T2, class D2>
bool operator!=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
template<class T1, class D1, class T2, class D2>
bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
template<class T1, class D1, class T2, class D2>
bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
template<class T1, class D1, class T2, class D2>
bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
template<class T1, class D1, class T2, class D2>
bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
template<class T, class D>
bool operator==(const unique_ptr<T, D>& x, nullptr_t) noexcept;
template<class T, class D>
bool operator==(nullptr_t, const unique_ptr<T, D>& y) noexcept;
template<class T, class D>
bool operator!=(const unique_ptr<T, D>& x, nullptr_t) noexcept;
template<class T, class D>
bool operator!=(nullptr_t, const unique_ptr<T, D>& y) noexcept;
template<class T, class D>
bool operator<(const unique_ptr<T, D>& x, nullptr_t);
template<class T, class D>
bool operator<(nullptr_t, const unique_ptr<T, D>& y);
template<class T, class D>
bool operator>(const unique_ptr<T, D>& x, nullptr_t);
template<class T, class D>
bool operator>(nullptr_t, const unique_ptr<T, D>& y);
template<class T, class D>
bool operator<=(const unique_ptr<T, D>& x, nullptr_t);
template<class T, class D>
bool operator<=(nullptr_t, const unique_ptr<T, D>& y);
template<class T, class D>
bool operator>=(const unique_ptr<T, D>& x, nullptr_t);
template<class T, class D>
bool operator>=(nullptr_t, const unique_ptr<T, D>& y);
template<class E, class T, class Y, class D>
basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const unique_ptr<Y, D>& p);
// class bad_weak_ptr
class bad_weak_ptr;
// class template shared_ptr
template<class T> class shared_ptr;
// shared_ptr creation
template<class T, class... Args>
shared_ptr<T> make_shared(Args&&... args); // T is not array
template<class T, class A, class... Args>
shared_ptr<T> allocate_shared(const A& a, Args&&... args); // T is not array
template<class T>
shared_ptr<T> make_shared(size_t N); // T is U[]
template<class T, class A>
shared_ptr<T> allocate_shared(const A& a, size_t N); // T is U[]
template<class T>
shared_ptr<T> make_shared(); // T is U[N]
template<class T, class A>
shared_ptr<T> allocate_shared(const A& a); // T is U[N]
template<class T>
shared_ptr<T> make_shared(size_t N, const remove_extent_t<T>& u); // T is U[]
template<class T, class A>
shared_ptr<T> allocate_shared(const A& a, size_t N,
const remove_extent_t<T>& u); // T is U[]
template<class T>
shared_ptr<T> make_shared(const remove_extent_t<T>& u); // T is U[N]
template<class T, class A>
shared_ptr<T> allocate_shared(const A& a, const remove_extent_t<T>& u); // T is U[N]
template<class T>
shared_ptr<T> make_shared_default_init(); // T is not U[]
template<class T, class A>
shared_ptr<T> allocate_shared_default_init(const A& a); // T is not U[]
template<class T>
shared_ptr<T> make_shared_default_init(size_t N); // T is U[]
template<class T, class A>
shared_ptr<T> allocate_shared_default_init(const A& a, size_t N); // T is U[]
// shared_ptr comparisons
template<class T, class U>
bool operator==(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;
template<class T, class U>
bool operator!=(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;
template<class T, class U>
bool operator<(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;
template<class T, class U>
bool operator>(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;
template<class T, class U>
bool operator<=(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;
template<class T, class U>
bool operator>=(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;
template<class T>
bool operator==(const shared_ptr<T>& x, nullptr_t) noexcept;
template<class T>
bool operator==(nullptr_t, const shared_ptr<T>& y) noexcept;
template<class T>
bool operator!=(const shared_ptr<T>& x, nullptr_t) noexcept;
template<class T>
bool operator!=(nullptr_t, const shared_ptr<T>& y) noexcept;
template<class T>
bool operator<(const shared_ptr<T>& x, nullptr_t) noexcept;
template<class T>
bool operator<(nullptr_t, const shared_ptr<T>& y) noexcept;
template<class T>
bool operator>(const shared_ptr<T>& x, nullptr_t) noexcept;
template<class T>
bool operator>(nullptr_t, const shared_ptr<T>& y) noexcept;
template<class T>
bool operator<=(const shared_ptr<T>& x, nullptr_t) noexcept;
template<class T>
bool operator<=(nullptr_t, const shared_ptr<T>& y) noexcept;
template<class T>
bool operator>=(const shared_ptr<T>& x, nullptr_t) noexcept;
template<class T>
bool operator>=(nullptr_t, const shared_ptr<T>& y) noexcept;
// shared_ptr specialized algorithms
template<class T>
void swap(shared_ptr<T>& a, shared_ptr<T>& b) noexcept;
// shared_ptr casts
template<class T, class U>
shared_ptr<T> static_pointer_cast(const shared_ptr<U>& r) noexcept;
template<class T, class U>
shared_ptr<T> static_pointer_cast(shared_ptr<U>&& r) noexcept;
template<class T, class U>
shared_ptr<T> dynamic_pointer_cast(const shared_ptr<U>& r) noexcept;
template<class T, class U>
shared_ptr<T> dynamic_pointer_cast(shared_ptr<U>&& r) noexcept;
template<class T, class U>
shared_ptr<T> const_pointer_cast(const shared_ptr<U>& r) noexcept;
template<class T, class U>
shared_ptr<T> const_pointer_cast(shared_ptr<U>&& r) noexcept;
template<class T, class U>
shared_ptr<T> reinterpret_pointer_cast(const shared_ptr<U>& r) noexcept;
template<class T, class U>
shared_ptr<T> reinterpret_pointer_cast(shared_ptr<U>&& r) noexcept;
// shared_ptr get_deleter
template<class D, class T>
D* get_deleter(const shared_ptr<T>& p) noexcept;
// shared_ptr I/O
template<class E, class T, class Y>
basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const shared_ptr<Y>& p);
// class template weak_ptr
template<class T> class weak_ptr;
// weak_ptr specialized algorithms
template<class T> void swap(weak_ptr<T>& a, weak_ptr<T>& b) noexcept;
// class template owner_less
template<class T = void> struct owner_less;
// class template enable_shared_from_this
template<class T> class enable_shared_from_this;
// hash support
template<class T> struct hash;
template<class T, class D> struct hash<unique_ptr<T, D>>;
template<class T> struct hash<shared_ptr<T>>;
// atomic smart pointers
template<class T> struct atomic;
template<class T> struct atomic<shared_ptr<T>>;
template<class T> struct atomic<weak_ptr<T>>;
// shared_ptr atomic access
template<class T>
bool atomic_is_lock_free(const shared_ptr<T>* p);
template<class T>
shared_ptr<T> atomic_load(const shared_ptr<T>* p);
template<class T>
shared_ptr<T> atomic_load_explicit(const shared_ptr<T>* p, memory_order mo);
template<class T>
void atomic_store(shared_ptr<T>* p, shared_ptr<T> r);
template<class T>
void atomic_store_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo);
template<class T>
shared_ptr<T> atomic_exchange(shared_ptr<T>* p, shared_ptr<T> r);
template<class T>
shared_ptr<T> atomic_exchange_explicit(shared_ptr<T>* p, shared_ptr<T> r,
memory_order mo);
template<class T>
bool atomic_compare_exchange_weak(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);
template<class T>
bool atomic_compare_exchange_strong(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);
template<class T>
bool atomic_compare_exchange_weak_explicit(shared_ptr<T>* p, shared_ptr<T>* v,
shared_ptr<T> w, memory_order success,
memory_order failure);
template<class T>
bool atomic_compare_exchange_strong_explicit(shared_ptr<T>* p, shared_ptr<T>* v,
shared_ptr<T> w, memory_order success,
memory_order failure);
}Helper concepts
template<class I> concept __NoThrowInputIterator = // exposition only InputIterator<I> && is_lvalue_reference_v<iter_reference_t<I>> && Same<remove_cvref_t<iter_reference_t<I>>, iter_value_t<I>>; template<class S, class I> concept __NoThrowSentinel = Sentinel<S, I>; // exposition only template<class R> concept __NoThrowInputRange = // exposition only Range<R> && __NoThrowInputIterator<iterator_t<R>> && __NoThrowSentinel<sentinel_t<R>, iterator_t<R>>; template<class I> concept __NoThrowForwardIterator = // exposition only __NoThrowInputIterator<I> && ForwardIterator<I> && __NoThrowSentinel<I, I>; template<class R> concept __NoThrowForwardRange = // exposition only __NoThrowInputRange<R> && __NoThrowForwardIterator<iterator_t<R>>;
Note: These names are only for exposition, they are not part of the interface.
Class template std::pointer_traits
namespace std {
template <class Ptr> struct pointer_traits {
using pointer = Ptr;
using element_type = /* see definition */;
using difference_type = /* see definition */;
template <class U> using rebind = /* see definition */;
static pointer pointer_to(/* see definition */ r);
};
template <class T> struct pointer_traits<T*> {
using pointer = T*;
using element_type = T;
using difference_type = ptrdiff_t;
template <class U> using rebind = U*;
static constexpr pointer pointer_to(/* see definition */ r) noexcept;
};
}Class std::allocator_arg_t
namespace std {
struct allocator_arg_t { explicit allocator_arg_t() = default; };
inline constexpr allocator_arg_t allocator_arg{};
}Class template std::allocator_traits
namespace std {
template<class Alloc> struct allocator_traits {
using allocator_type = Alloc;
using value_type = typename Alloc::value_type;
using pointer = /* see definition */;
using const_pointer = /* see definition */;
using void_pointer = /* see definition */;
using const_void_pointer = /* see definition */;
using difference_type = /* see definition */;
using size_type = /* see definition */;
using propagate_on_container_copy_assignment = /* see definition */;
using propagate_on_container_move_assignment = /* see definition */;
using propagate_on_container_swap = /* see definition */;
using is_always_equal = /* see definition */;
template<class T> using rebind_alloc = /* see definition */;
template<class T> using rebind_traits = allocator_traits<rebind_alloc<T>>;
[[nodiscard]] static pointer allocate(Alloc& a, size_type n);
[[nodiscard]] static pointer allocate(Alloc& a, size_type n, const_void_pointer hint);
static void deallocate(Alloc& a, pointer p, size_type n);
template<class T, class... Args>
static void construct(Alloc& a, T* p, Args&&... args);
template<class T>
static void destroy(Alloc& a, T* p);
static size_type max_size(const Alloc& a) noexcept;
static Alloc select_on_container_copy_construction(const Alloc& rhs);
};
}Class template std::allocator
namespace std {
template<class T> class allocator {
public:
using value_type = T;
using size_type = size_t;
using difference_type = ptrdiff_t;
using propagate_on_container_move_assignment = true_type;
using is_always_equal = true_type;
constexpr allocator() noexcept;
constexpr allocator(const allocator&) noexcept;
template<class U> constexpr allocator(const allocator<U>&) noexcept;
~allocator();
allocator& operator=(const allocator&) = default;
[[nodiscard]] T* allocate(size_t n);
void deallocate(T* p, size_t n);
};
}Class template std::default_delete
namespace std {
template<class T> struct default_delete {
constexpr default_delete() noexcept = default;
template<class U> default_delete(const default_delete<U>&) noexcept;
void operator()(T*) const;
};
template<class T> struct default_delete<T[]> {
constexpr default_delete() noexcept = default;
template<class U> default_delete(const default_delete<U[]>&) noexcept;
template<class U> void operator()(U* ptr) const;
};
}Class template std::unique_ptr
namespace std {
template<class T, class D = default_delete<T>> class unique_ptr {
public:
using pointer = /* see definition */;
using element_type = T;
using deleter_type = D;
// constructors
constexpr unique_ptr() noexcept;
explicit unique_ptr(pointer p) noexcept;
unique_ptr(pointer p, /* see definition */ d1) noexcept;
unique_ptr(pointer p, /* see definition */ d2) noexcept;
unique_ptr(unique_ptr&& u) noexcept;
constexpr unique_ptr(nullptr_t) noexcept;
template<class U, class E>
unique_ptr(unique_ptr<U, E>&& u) noexcept;
// destructor
~unique_ptr();
// assignment
unique_ptr& operator=(unique_ptr&& u) noexcept;
template<class U, class E>
unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;
unique_ptr& operator=(nullptr_t) noexcept;
// observers
add_lvalue_reference_t<T> operator*() const;
pointer operator->() const noexcept;
pointer get() const noexcept;
deleter_type& get_deleter() noexcept;
const deleter_type& get_deleter() const noexcept;
explicit operator bool() const noexcept;
// modifiers
pointer release() noexcept;
void reset(pointer p = pointer()) noexcept;
void swap(unique_ptr& u) noexcept;
// disable copy from lvalue
unique_ptr(const unique_ptr&) = delete;
unique_ptr& operator=(const unique_ptr&) = delete;
};
template<class T, class D> class unique_ptr<T[], D> {
public:
using pointer = /* see definition */;
using element_type = T;
using deleter_type = D;
// constructors
constexpr unique_ptr() noexcept;
template<class U> explicit unique_ptr(U p) noexcept;
template<class U> unique_ptr(U p, /* see definition */ d) noexcept;
template<class U> unique_ptr(U p, /* see definition */ d) noexcept;
unique_ptr(unique_ptr&& u) noexcept;
template<class U, class E>
unique_ptr(unique_ptr<U, E>&& u) noexcept;
constexpr unique_ptr(nullptr_t) noexcept;
// destructor
~unique_ptr();
// assignment
unique_ptr& operator=(unique_ptr&& u) noexcept;
template<class U, class E>
unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;
unique_ptr& operator=(nullptr_t) noexcept;
// observers
T& operator[](size_t i) const;
pointer get() const noexcept;
deleter_type& get_deleter() noexcept;
const deleter_type& get_deleter() const noexcept;
explicit operator bool() const noexcept;
// modifiers
pointer release() noexcept;
template<class U> void reset(U p) noexcept;
void reset(nullptr_t = nullptr) noexcept;
void swap(unique_ptr& u) noexcept;
// disable copy from lvalue
unique_ptr(const unique_ptr&) = delete;
unique_ptr& operator=(const unique_ptr&) = delete;
};
}Class std::bad_weak_ptr
namespace std {
class bad_weak_ptr : public exception {
public:
bad_weak_ptr() noexcept;
};
}Class template std::shared_ptr
namespace std {
template<class T> class shared_ptr {
public:
using element_type = remove_extent_t<T>;
using weak_type = weak_ptr<T>;
// constructors
constexpr shared_ptr() noexcept;
constexpr shared_ptr(nullptr_t) noexcept : shared_ptr() { }
template<class Y>
explicit shared_ptr(Y* p);
template<class Y, class D>
shared_ptr(Y* p, D d);
template<class Y, class D, class A>
shared_ptr(Y* p, D d, A a);
template<class D>
shared_ptr(nullptr_t p, D d);
template<class D, class A>
shared_ptr(nullptr_t p, D d, A a);
template<class Y>
shared_ptr(const shared_ptr<Y>& r, element_type* p) noexcept;
template<class Y>
shared_ptr(shared_ptr<Y>&& r, element_type* p) noexcept;
shared_ptr(const shared_ptr& r) noexcept;
template<class Y>
shared_ptr(const shared_ptr<Y>& r) noexcept;
shared_ptr(shared_ptr&& r) noexcept;
template<class Y>
shared_ptr(shared_ptr<Y>&& r) noexcept;
template<class Y>
explicit shared_ptr(const weak_ptr<Y>& r);
template<class Y, class D>
shared_ptr(unique_ptr<Y, D>&& r);
// destructor
~shared_ptr();
// assignment
shared_ptr& operator=(const shared_ptr& r) noexcept;
template<class Y>
shared_ptr& operator=(const shared_ptr<Y>& r) noexcept;
shared_ptr& operator=(shared_ptr&& r) noexcept;
template<class Y>
shared_ptr& operator=(shared_ptr<Y>&& r) noexcept;
template<class Y, class D>
shared_ptr& operator=(unique_ptr<Y, D>&& r);
// modifiers
void swap(shared_ptr& r) noexcept;
void reset() noexcept;
template<class Y>
void reset(Y* p);
template<class Y, class D>
void reset(Y* p, D d);
template<class Y, class D, class A>
void reset(Y* p, D d, A a);
// observers
element_type* get() const noexcept;
T& operator*() const noexcept;
T* operator->() const noexcept;
element_type& operator[](ptrdiff_t i) const;
long use_count() const noexcept;
explicit operator bool() const noexcept;
template<class U>
bool owner_before(const shared_ptr<U>& b) const noexcept;
template<class U>
bool owner_before(const weak_ptr<U>& b) const noexcept;
};
template<class T>
shared_ptr(weak_ptr<T>) -> shared_ptr<T>;
template<class T, class D>
shared_ptr(unique_ptr<T, D>) -> shared_ptr<T>;
}Class template std::weak_ptr
namespace std {
template<class T> class weak_ptr {
public:
using element_type = remove_extent_t<T>;
// constructors
constexpr weak_ptr() noexcept;
template<class Y>
weak_ptr(const shared_ptr<Y>& r) noexcept;
weak_ptr(const weak_ptr& r) noexcept;
template<class Y>
weak_ptr(const weak_ptr<Y>& r) noexcept;
weak_ptr(weak_ptr&& r) noexcept;
template<class Y>
weak_ptr(weak_ptr<Y>&& r) noexcept;
// destructor
~weak_ptr();
// assignment
weak_ptr& operator=(const weak_ptr& r) noexcept;
template<class Y>
weak_ptr& operator=(const weak_ptr<Y>& r) noexcept;
template<class Y>
weak_ptr& operator=(const shared_ptr<Y>& r) noexcept;
weak_ptr& operator=(weak_ptr&& r) noexcept;
template<class Y>
weak_ptr& operator=(weak_ptr<Y>&& r) noexcept;
// modifiers
void swap(weak_ptr& r) noexcept;
void reset() noexcept;
// observers
long use_count() const noexcept;
bool expired() const noexcept;
shared_ptr<T> lock() const noexcept;
template<class U>
bool owner_before(const shared_ptr<U>& b) const noexcept;
template<class U>
bool owner_before(const weak_ptr<U>& b) const noexcept;
};
template<class T>
weak_ptr(shared_ptr<T>) -> weak_ptr<T>;
}Class template std::owner_less
namespace std {
template<class T = void> struct owner_less;
template<class T> struct owner_less<shared_ptr<T>> {
bool operator()(const shared_ptr<T>&, const shared_ptr<T>&) const noexcept;
bool operator()(const shared_ptr<T>&, const weak_ptr<T>&) const noexcept;
bool operator()(const weak_ptr<T>&, const shared_ptr<T>&) const noexcept;
};
template<class T> struct owner_less<weak_ptr<T>> {
bool operator()(const weak_ptr<T>&, const weak_ptr<T>&) const noexcept;
bool operator()(const shared_ptr<T>&, const weak_ptr<T>&) const noexcept;
bool operator()(const weak_ptr<T>&, const shared_ptr<T>&) const noexcept;
};
template<> struct owner_less<void> {
template<class T, class U>
bool operator()(const shared_ptr<T>&, const shared_ptr<U>&) const noexcept;
template<class T, class U>
bool operator()(const shared_ptr<T>&, const weak_ptr<U>&) const noexcept;
template<class T, class U>
bool operator()(const weak_ptr<T>&, const shared_ptr<U>&) const noexcept;
template<class T, class U>
bool operator()(const weak_ptr<T>&, const weak_ptr<U>&) const noexcept;
using is_transparent = /* unspecified */;
};
}Class template std::enable_shared_from_this
namespace std {
template<class T> class enable_shared_from_this {
protected:
constexpr enable_shared_from_this() noexcept;
enable_shared_from_this(const enable_shared_from_this&) noexcept;
enable_shared_from_this& operator=(const enable_shared_from_this&) noexcept;
~enable_shared_from_this();
public:
shared_ptr<T> shared_from_this();
shared_ptr<T const> shared_from_this() const;
weak_ptr<T> weak_from_this() noexcept;
weak_ptr<T const> weak_from_this() const noexcept;
private:
mutable weak_ptr<T> weak_this; // exposition only
};
}Class template std::atomic's specialization for std::shared_ptr
namespace std {
template<class T> struct atomic<shared_ptr<T>> {
using value_type = shared_ptr<T>;
static constexpr bool is_always_lock_free = /* implementation-defined */;
bool is_lock_free() const noexcept;
void store(shared_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;
shared_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept;
operator shared_ptr<T>() const noexcept;
shared_ptr<T> exchange(shared_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;
bool compare_exchange_weak(shared_ptr<T>& expected, shared_ptr<T> desired,
memory_order success, memory_order failure) noexcept;
bool compare_exchange_strong(shared_ptr<T>& expected, shared_ptr<T> desired,
memory_order success, memory_order failure) noexcept;
bool compare_exchange_weak(shared_ptr<T>& expected, shared_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;
bool compare_exchange_strong(shared_ptr<T>& expected, shared_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;
constexpr atomic() noexcept = default;
atomic(shared_ptr<T> desired) noexcept;
atomic(const atomic&) = delete;
void operator=(const atomic&) = delete;
void operator=(shared_ptr<T> desired) noexcept;
private:
shared_ptr<T> p; // exposition only
};
}Class template std::atomic's specialization for std::weak_ptr
namespace std {
template<class T> struct atomic<weak_ptr<T>> {
using value_type = weak_ptr<T>;
static constexpr bool is_always_lock_free = /* implementation-defined */;
bool is_lock_free() const noexcept;
void store(weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;
weak_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept;
operator weak_ptr<T>() const noexcept;
weak_ptr<T> exchange(weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;
bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order success, memory_order failure) noexcept;
bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order success, memory_order failure) noexcept;
bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;
bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;
constexpr atomic() noexcept = default;
atomic(weak_ptr<T> desired) noexcept;
atomic(const atomic&) = delete;
void operator=(const atomic&) = delete;
void operator=(weak_ptr<T> desired) noexcept;
private:
weak_ptr<T> p; // exposition only
};
}
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/header/memory