Standard library header <algorithm>
This header is part of the algorithm library.
Functions
Non-modifying sequence operations |
|
|
(C++11)(C++11)(C++11) | checks if a predicate is true for all, any or none of the elements in a range (function template) |
| applies a function to a range of elements (function template) |
|
|
(C++17) | applies a function object to the first n elements of a sequence (function template) |
| returns the number of elements satisfying specific criteria (function template) |
|
| finds the first position where two ranges differ (function template) |
|
|
(C++11) | finds the first element satisfying specific criteria (function template) |
| finds the last sequence of elements in a certain range (function template) |
|
| searches for any one of a set of elements (function template) |
|
| finds the first two adjacent items that are equal (or satisfy a given predicate) (function template) |
|
| searches for a range of elements (function template) |
|
| searches a range for a number of consecutive copies of an element (function template) |
|
Modifying sequence operations |
|
|
(C++11) | copies a range of elements to a new location (function template) |
|
(C++11) | copies a number of elements to a new location (function template) |
| copies a range of elements in backwards order (function template) |
|
|
(C++11) | moves a range of elements to a new location (function template) |
|
(C++11) | moves a range of elements to a new location in backwards order (function template) |
| copy-assigns the given value to every element in a range (function template) |
|
| copy-assigns the given value to N elements in a range (function template) |
|
| applies a function to a range of elements (function template) |
|
| assigns the results of successive function calls to every element in a range (function template) |
|
| assigns the results of successive function calls to N elements in a range (function template) |
|
| removes elements satisfying specific criteria (function template) |
|
| copies a range of elements omitting those that satisfy specific criteria (function template) |
|
| replaces all values satisfying specific criteria with another value (function template) |
|
| copies a range, replacing elements satisfying specific criteria with another value (function template) |
|
| swaps the values of two objects (function template) |
|
| swaps two ranges of elements (function template) |
|
| swaps the elements pointed to by two iterators (function template) |
|
| reverses the order of elements in a range (function template) |
|
| creates a copy of a range that is reversed (function template) |
|
| rotates the order of elements in a range (function template) |
|
| copies and rotate a range of elements (function template) |
|
|
(C++20) | shifts elements in a range (function template) |
|
(until C++17)(C++11) | randomly re-orders elements in a range (function template) |
|
(C++17) | selects n random elements from a sequence (function template) |
| removes consecutive duplicate elements in a range (function template) |
|
| creates a copy of some range of elements that contains no consecutive duplicates (function template) |
|
Partitioning operations |
|
|
(C++11) | determines if the range is partitioned by the given predicate (function template) |
| divides a range of elements into two groups (function template) |
|
|
(C++11) | copies a range dividing the elements into two groups (function template) |
| divides elements into two groups while preserving their relative order (function template) |
|
|
(C++11) | locates the partition point of a partitioned range (function template) |
Sorting operations |
|
|
(C++11) | checks whether a range is sorted into ascending order (function template) |
|
(C++11) | finds the largest sorted subrange (function template) |
| sorts a range into ascending order (function template) |
|
| sorts the first N elements of a range (function template) |
|
| copies and partially sorts a range of elements (function template) |
|
| sorts a range of elements while preserving order between equal elements (function template) |
|
| partially sorts the given range making sure that it is partitioned by the given element (function template) |
|
Binary search operations (on sorted ranges) |
|
| returns an iterator to the first element not less than the given value (function template) |
|
| returns an iterator to the first element greater than a certain value (function template) |
|
| determines if an element exists in a certain range (function template) |
|
| returns range of elements matching a specific key (function template) |
|
Other operations on sorted ranges |
|
| merges two sorted ranges (function template) |
|
| merges two ordered ranges in-place (function template) |
|
Set operations (on sorted ranges) |
|
| returns true if one set is a subset of another (function template) |
|
| computes the difference between two sets (function template) |
|
| computes the intersection of two sets (function template) |
|
| computes the symmetric difference between two sets (function template) |
|
| computes the union of two sets (function template) |
|
Heap operations |
|
|
(C++11) | checks if the given range is a max heap (function template) |
|
(C++11) | finds the largest subrange that is a max heap (function template) |
| creates a max heap out of a range of elements (function template) |
|
| adds an element to a max heap (function template) |
|
| removes the largest element from a max heap (function template) |
|
| turns a max heap into a range of elements sorted in ascending order (function template) |
|
Minimum/maximum operations |
|
| returns the greater of the given values (function template) |
|
| returns the largest element in a range (function template) |
|
| returns the smaller of the given values (function template) |
|
| returns the smallest element in a range (function template) |
|
|
(C++11) | returns the smaller and larger of two elements (function template) |
|
(C++11) | returns the smallest and the largest elements in a range (function template) |
|
(C++17) | clamps a value between a pair of boundary values (function template) |
Comparison operations |
|
| determines if two sets of elements are the same (function template) |
|
| returns true if one range is lexicographically less than another (function template) |
|
|
(C++20) | compares two values using three-way comparison (function template) |
|
(C++20) | compares two ranges using three-way comparison (function template) |
Permutation operations |
|
|
(C++11) | determines if a sequence is a permutation of another sequence (function template) |
| generates the next greater lexicographic permutation of a range of elements (function template) |
|
| generates the next smaller lexicographic permutation of a range of elements (function template) |
|
Niebloids
Defined in namespace std::ranges |
|
|---|---|
Non-modifying sequence operations |
|
checks if a predicate is true for all, any or none of the elements in a range (niebloid) |
|
| applies a function to a range of elements (niebloid) |
|
| returns the number of elements satisfying specific criteria (niebloid) |
|
| finds the first position where two ranges differ (niebloid) |
|
| finds the first element satisfying specific criteria (niebloid) |
|
| finds the last sequence of elements in a certain range (niebloid) |
|
| searches for any one of a set of elements (niebloid) |
|
| finds the first two adjacent items that are equal (or satisfy a given predicate) (niebloid) |
|
| searches for a range of elements (niebloid) |
|
| searches for a number consecutive copies of an element in a range (niebloid) |
|
Modifying sequence operations |
|
| copies a range of elements to a new location (niebloid) |
|
| copies a number of elements to a new location (niebloid) |
|
| copies a range of elements in backwards order (niebloid) |
|
| moves a range of elements to a new location (niebloid) |
|
| moves a range of elements to a new location in backwards order (niebloid) |
|
| assigns a range of elements a certain value (niebloid) |
|
| assigns a value to a number of elements (niebloid) |
|
| applies a function to a range of elements (niebloid) |
|
| saves the result of a function in a range (niebloid) |
|
| saves the result of N applications of a function (niebloid) |
|
| removes elements satisfying specific criteria (niebloid) |
|
| copies a range of elements omitting those that satisfy specific criteria (niebloid) |
|
| replaces all values satisfying specific criteria with another value (niebloid) |
|
| copies a range, replacing elements satisfying specific criteria with another value (niebloid) |
|
| swaps two ranges of elements (niebloid) |
|
| reverses the order of elements in a range (niebloid) |
|
| creates a copy of a range that is reversed (niebloid) |
|
| rotates the order of elements in a range (niebloid) |
|
| copies and rotate a range of elements (niebloid) |
|
| randomly re-orders elements in a range (niebloid) |
|
| removes consecutive duplicate elements in a range (niebloid) |
|
| creates a copy of some range of elements that contains no consecutive duplicates (niebloid) |
|
Partitioning operations |
|
| determines if the range is partitioned by the given predicate (niebloid) |
|
| divides a range of elements into two groups (niebloid) |
|
| copies a range dividing the elements into two groups (niebloid) |
|
| divides elements into two groups while preserving their relative order (niebloid) |
|
| locates the partition point of a partitioned range (niebloid) |
|
Sorting operations |
|
| checks whether a range is sorted into ascending order (niebloid) |
|
| finds the largest sorted subrange (niebloid) |
|
| sorts a range into ascending order (niebloid) |
|
| sorts the first N elements of a range (niebloid) |
|
| copies and partially sorts a range of elements (niebloid) |
|
| sorts a range of elements while preserving order between equal elements (niebloid) |
|
| partially sorts the given range making sure that it is partitioned by the given element (niebloid) |
|
Binary search operations (on sorted ranges) |
|
| returns an iterator to the first element not less than the given value (niebloid) |
|
| returns an iterator to the first element greater than a certain value (niebloid) |
|
| determines if an element exists in a certain range (niebloid) |
|
| returns range of elements matching a specific key (niebloid) |
|
Other operations on sorted ranges |
|
| merges two sorted ranges (niebloid) |
|
| merges two ordered ranges in-place (niebloid) |
|
Set operations (on sorted ranges) |
|
| returns true if one set is a subset of another (niebloid) |
|
| computes the difference between two sets (niebloid) |
|
| computes the intersection of two sets (niebloid) |
|
| computes the symmetric difference between two sets (niebloid) |
|
| computes the union of two sets (niebloid) |
|
Heap operations |
|
| checks if the given range is a max heap (niebloid) |
|
| finds the largest subrange that is a max heap (niebloid) |
|
| creates a max heap out of a range of elements (niebloid) |
|
| adds an element to a max heap (niebloid) |
|
| removes the largest element from a max heap (niebloid) |
|
| turns a max heap into a range of elements sorted in ascending order (niebloid) |
|
Minimum/maximum operations |
|
| returns the greater of the given values (niebloid) |
|
| returns the largest element in a range (niebloid) |
|
| returns the smaller of the given values (niebloid) |
|
| returns the smallest element in a range (niebloid) |
|
| returns the smaller and larger of two elements (niebloid) |
|
| returns the smallest and the largest elements in a range (niebloid) |
|
Comparison operations |
|
| determines if two sets of elements are the same (niebloid) |
|
| returns true if one range is lexicographically less than another (niebloid) |
|
Permutation operations |
|
| determines if a sequence is a permutation of another sequence (niebloid) |
|
| generates the next greater lexicographic permutation of a range of elements (niebloid) |
|
| generates the next smaller lexicographic permutation of a range of elements (niebloid) |
|
Synopsis
#include <initializer_list>
namespace std {
// non-modifying sequence operations:
// all of:
template<class InputIt, class Pred>
constexpr bool all_of(InputIt first, InputIt last, Pred pred);
template<class ExecutionPolicy, class ForwardIt, class Pred>
bool all_of(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, Pred pred);
namespace ranges {
template<InputIterator I, Sentinel<I> S, class Proj = identity,
IndirectUnaryPredicate<projected<I, Proj>> Pred>
constexpr bool all_of(I first, S last, Pred pred, Proj proj = {});
template<InputRange R, class Proj = identity,
IndirectUnaryPredicate<projected<iterator_t<R>, Proj>> Pred>
constexpr bool all_of(R&& r, Pred pred, Proj proj = {});
}
// any of:
template<class InputIt, class Pred>
constexpr bool any_of(InputIt first, InputIt last, Pred pred);
template<class ExecutionPolicy, class ForwardIt, class Pred>
bool any_of(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, Pred pred);
namespace ranges {
template<InputIterator I, Sentinel<I> S, class Proj = identity,
IndirectUnaryPredicate<projected<I, Proj>> Pred>
constexpr bool any_of(I first, S last, Pred pred, Proj proj = {});
template<InputRange R, class Proj = identity,
IndirectUnaryPredicate<projected<iterator_t<R>, Proj>> Pred>
constexpr bool any_of(R&& r, Pred pred, Proj proj = {});
}
// none of:
template<class InputIt, class Pred>
constexpr bool none_of(InputIt first, InputIt last, Pred pred);
template<class ExecutionPolicy, class ForwardIt, class Pred>
bool none_of(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, Pred pred);
namespace ranges {
template<InputIterator I, Sentinel<I> S, class Proj = identity,
IndirectUnaryPredicate<projected<I, Proj>> Pred>
constexpr bool none_of(I first, S last, Pred pred, Proj proj = {});
template<InputRange R, class Proj = identity,
IndirectUnaryPredicate<projected<iterator_t<R>, Proj>> Pred>
constexpr bool none_of(R&& r, Pred pred, Proj proj = {});
}
// for each:
template<class InputIt, class Function>
constexpr Function for_each(InputIt first, InputIt last, Function f);
template<class ExecutionPolicy, class ForwardIt, class Function>
void for_each(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, Function f);
namespace ranges {
template<class I, class F>
struct for_each_result {
[[no_unique_address]] I in;
[[no_unique_address]] F fun;
template<class I2, class F2>
requires ConvertibleTo<const I&, I2> && ConvertibleTo<const F&, F2>
operator for_each_result<I2, F2>() const & {
return {in, fun};
}
template<class I2, class F2>
requires ConvertibleTo<I, I2> && ConvertibleTo<F, F2>
operator for_each_result<I2, F2>() && {
return {std::move(in), std::move(fun)};
}
};
template<InputIterator I, Sentinel<I> S, class Proj = identity,
IndirectUnaryInvocable<projected<I, Proj>> Fun>
constexpr for_each_result<I, Fun>
for_each(I first, S last, Fun f, Proj proj = {});
template<InputRange R, class Proj = identity,
IndirectUnaryInvocable<projected<iterator_t<R>, Proj>> Fun>
constexpr for_each_result<safe_iterator_t<R>, Fun>
for_each(R&& r, Fun f, Proj proj = {});
}
template<class InputIt, class Size, class Function>
constexpr InputIt for_each_n(InputIt first, Size n, Function f);
template<class ExecutionPolicy, class ForwardIt, class Size, class Function>
ForwardIt for_each_n(ExecutionPolicy&& exec,
ForwardIt first, Size n, Function f);
// find:
template<class InputIt, class T>
constexpr InputIt find(InputIt first, InputIt last,
const T& value);
template<class ExecutionPolicy, class ForwardIt, class T>
ForwardIt find(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, const T& value);
template<class InputIt, class Pred>
constexpr InputIt find_if(InputIt first, InputIt last, Pred pred);
template<class ExecutionPolicy, class ForwardIt, class Pred>
ForwardIt find_if(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, Pred pred);
template<class InputIt, class Pred>
constexpr InputIt find_if_not(InputIt first, InputIt last, Pred pred);
template<class ExecutionPolicy, class ForwardIt, class Pred>
ForwardIt find_if_not(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, Pred pred);
namespace ranges {
template<InputIterator I, Sentinel<I> S, class T, class Proj = identity>
requires IndirectRelation<ranges::equal_to, projected<I, Proj>, const T*>
constexpr I find(I first, S last, const T& value, Proj proj = {});
template<InputRange R, class T, class Proj = identity>
requires IndirectRelation<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
constexpr safe_iterator_t<R>
find(R&& r, const T& value, Proj proj = {});
template<InputIterator I, Sentinel<I> S, class Proj = identity,
IndirectUnaryPredicate<projected<I, Proj>> Pred>
constexpr I find_if(I first, S last, Pred pred, Proj proj = {});
template<InputRange R, class Proj = identity,
IndirectUnaryPredicate<projected<iterator_t<R>, Proj>> Pred>
constexpr safe_iterator_t<R>
find_if(R&& r, Pred pred, Proj proj = {});
template<InputIterator I, Sentinel<I> S, class Proj = identity,
IndirectUnaryPredicate<projected<I, Proj>> Pred>
constexpr I find_if_not(I first, S last, Pred pred, Proj proj = {});
template<InputRange R, class Proj = identity,
IndirectUnaryPredicate<projected<iterator_t<R>, Proj>> Pred>
constexpr safe_iterator_t<R>
find_if_not(R&& r, Pred pred, Proj proj = {});
}
// find end:
template<class ForwardIt1, class ForwardIt2>
constexpr ForwardIt1
find_end(ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, ForwardIt2 last2);
template<class ForwardIt1, class ForwardIt2, class BinaryPred>
constexpr ForwardIt1
find_end(ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, ForwardIt2 last2,
BinaryPred pred);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2>
ForwardIt1
find_end(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, ForwardIt2 last2);
template<class ExecutionPolicy, class ForwardIt1,
class ForwardIt2, class BinaryPred>
ForwardIt1
find_end(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, ForwardIt2 last2,
BinaryPred pred);
namespace ranges {
template<ForwardIterator I1, Sentinel<I1> S1, ForwardIterator I2, Sentinel<I2> S2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
requires IndirectlyComparable<I1, I2, Pred, Proj1, Proj2>
constexpr subrange<I1>
find_end(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});
template<ForwardRange R1, ForwardRange R2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
requires IndirectlyComparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr safe_subrange_t<R1>
find_end(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});
}
// find first:
template<class InputIt, class ForwardIt>
constexpr InputIt
find_first_of(InputIt first1, InputIt last1, ForwardIt first2, ForwardIt last2);
template<class InputIt, class ForwardIt, class BinaryPred>
constexpr InputIt
find_first_of(InputIt first1, InputIt last1, ForwardIt first2, ForwardIt last2,
BinaryPred pred);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2>
ForwardIt1
find_first_of(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryPred>
ForwardIt1
find_first_of(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2,
BinaryPred pred);
namespace ranges {
template<InputIterator I1, Sentinel<I1> S1, ForwardIterator I2, Sentinel<I2> S2,
class Proj1 = identity, class Proj2 = identity,
IndirectRelation<projected<I1, Proj1>,
projected<I2, Proj2>> Pred = ranges::equal_to>
constexpr I1 find_first_of(I1 first1, S1 last1, I2 first2, S2 last2,
Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});
template<InputRange R1, ForwardRange R2,
class Proj1 = identity, class Proj2 = identity,
IndirectRelation<projected<iterator_t<R1>, Proj1>,
projected<iterator_t<R2>, Proj2>> Pred = ranges::equal_to>
constexpr safe_iterator_t<R1>
find_first_of(R1&& r1, R2&& r2,
Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});
}
// adjacent find:
template<class ForwardIt>
constexpr ForwardIt
adjacent_find(ForwardIt first, ForwardIt last);
template<class ForwardIt, class BinaryPred>
constexpr ForwardIt
adjacent_find(ForwardIt first, ForwardIt last, BinaryPred pred);
template<class ExecutionPolicy, class ForwardIt>
ForwardIt
adjacent_find(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last);
template<class ExecutionPolicy, class ForwardIt, class BinaryPred>
ForwardIt
adjacent_find(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, BinaryPred pred);
namespace ranges {
template<ForwardIterator I, Sentinel<I> S, class Proj = identity,
IndirectRelation<projected<I, Proj>> Pred = ranges::equal_to>
constexpr I adjacent_find(I first, S last, Pred pred = {},
Proj proj = {});
template<ForwardRange R, class Proj = identity,
IndirectRelation<projected<iterator_t<R>, Proj>> Pred = ranges::equal_to>
constexpr safe_iterator_t<R>
adjacent_find(R&& r, Pred pred = {}, Proj proj = {});
}
// count:
template<class InputIt, class T>
constexpr typename iterator_traits<InputIt>::difference_type
count(InputIt first, InputIt last, const T& value);
template<class ExecutionPolicy, class ForwardIt, class T>
typename iterator_traits<ForwardIt>::difference_type
count(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, const T& value);
template<class InputIt, class Pred>
constexpr typename iterator_traits<InputIt>::difference_type
count_if(InputIt first, InputIt last, Pred pred);
template<class ExecutionPolicy, class ForwardIt, class Pred>
typename iterator_traits<ForwardIt>::difference_type
count_if(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, Pred pred);
namespace ranges {
template<InputIterator I, Sentinel<I> S, class T, class Proj = identity>
requires IndirectRelation<ranges::equal_to, projected<I, Proj>, const T*>
constexpr iter_difference_t<I>
count(I first, S last, const T& value, Proj proj = {});
template<InputRange R, class T, class Proj = identity>
requires IndirectRelation<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
constexpr iter_difference_t<iterator_t<R>>
count(R&& r, const T& value, Proj proj = {});
template<InputIterator I, Sentinel<I> S, class Proj = identity,
IndirectUnaryPredicate<projected<I, Proj>> Pred>
constexpr iter_difference_t<I>
count_if(I first, S last, Pred pred, Proj proj = {});
template<InputRange R, class Proj = identity,
IndirectUnaryPredicate<projected<iterator_t<R>, Proj>> Pred>
constexpr iter_difference_t<iterator_t<R>>
count_if(R&& r, Pred pred, Proj proj = {});
}
// mismatch:
template<class InputIt1, class InputIt2>
constexpr pair<InputIt1, InputIt2>
mismatch(InputIt1 first1, InputIt1 last1, InputIt2 first2);
template<class InputIt1, class InputIt2, class BinaryPred>
constexpr pair<InputIt1, InputIt2>
mismatch(InputIt1 first1, InputIt1 last1, InputIt2 first2, BinaryPred pred);
template<class InputIt1, class InputIt2>
constexpr pair<InputIt1, InputIt2>
mismatch(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2);
template<class InputIt1, class InputIt2, class BinaryPred>
constexpr pair<InputIt1, InputIt2>
mismatch(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2,
BinaryPred pred);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2>
pair<ForwardIt1, ForwardIt2>
mismatch(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2,
class BinaryPred>
pair<ForwardIt1, ForwardIt2>
mismatch(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, BinaryPred pred);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2>
pair<ForwardIt1, ForwardIt2>
mismatch(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, ForwardIt2 last2);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryPred>
pair<ForwardIt1, ForwardIt2>
mismatch(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, ForwardIt2 last2,
BinaryPred pred);
namespace ranges {
template<class I1, class I2>
struct mismatch_result {
[[no_unique_address]] I1 in1;
[[no_unique_address]] I2 in2;
template<class II1, class II2>
requires ConvertibleTo<const I1&, II1> && ConvertibleTo<const I2&, II2>
operator mismatch_result<II1, II2>() const & {
return {in1, in2};
}
template<class II1, class II2>
requires ConvertibleTo<I1, II1> && ConvertibleTo<I2, II2>
operator mismatch_result<II1, II2>() && {
return {std::move(in1), std::move(in2)};
}
};
template<InputIterator I1, Sentinel<I1> S1, InputIterator I2, Sentinel<I2> S2,
class Proj1 = identity, class Proj2 = identity,
IndirectRelation<projected<I1, Proj1>,
projected<I2, Proj2>> Pred = ranges::equal_to>
constexpr mismatch_result<I1, I2>
mismatch(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});
template<InputRange R1, InputRange R2,
class Proj1 = identity, class Proj2 = identity,
IndirectRelation<projected<iterator_t<R1>, Proj1>,
projected<iterator_t<R2>, Proj2>> Pred = ranges::equal_to>
constexpr mismatch_result<safe_iterator_t<R1>, safe_iterator_t<R2>>
mismatch(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});
}
// equal:
template<class InputIt1, class InputIt2>
constexpr bool equal(InputIt1 first1, InputIt1 last1, InputIt2 first2);
template<class InputIt1, class InputIt2, class BinaryPred>
constexpr bool equal(InputIt1 first1, InputIt1 last1, InputIt2 first2,
BinaryPred pred);
template<class InputIt1, class InputIt2>
constexpr bool equal(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2);
template<class InputIt1, class InputIt2, class BinaryPred>
constexpr bool equal(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2,
BinaryPred pred);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2>
bool equal(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryPred>
bool equal(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, BinaryPred pred);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2>
bool equal(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, ForwardIt2 last2);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryPred>
bool equal(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, ForwardIt2 last2,
BinaryPred pred);
namespace ranges {
template<InputIterator I1, Sentinel<I1> S1, InputIterator I2, Sentinel<I2> S2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
requires IndirectlyComparable<I1, I2, Pred, Proj1, Proj2>
constexpr bool equal(I1 first1, S1 last1, I2 first2, S2 last2,
Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});
template<InputRange R1, InputRange R2, class Pred = ranges::equal_to,
class Proj1 = identity, class Proj2 = identity>
requires IndirectlyComparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr bool equal(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});
}
// is permutation:
template<class ForwardIt1, class ForwardIt2>
constexpr bool is_permutation(ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2);
template<class ForwardIt1, class ForwardIt2, class BinaryPred>
constexpr bool is_permutation(ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2,
BinaryPred pred);
template<class ForwardIt1, class ForwardIt2>
constexpr bool is_permutation(ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2);
template<class ForwardIt1, class ForwardIt2, class BinaryPred>
constexpr bool is_permutation(ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2,
BinaryPred pred);
namespace ranges {
template<ForwardIterator I1, Sentinel<I1> S1, ForwardIterator I2,
Sentinel<I2> S2, class Pred = ranges::equal_to, class Proj1 = identity,
class Proj2 = identity>
requires IndirectlyComparable<I1, I2, Pred, Proj1, Proj2>
constexpr bool is_permutation(I1 first1, S1 last1, I2 first2, S2 last2,
Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});
template<ForwardRange R1, ForwardRange R2, class Pred = ranges::equal_to,
class Proj1 = identity, class Proj2 = identity>
requires IndirectlyComparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr bool is_permutation(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});
}
// search:
template<class ForwardIt1, class ForwardIt2>
constexpr ForwardIt1
search(ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, ForwardIt2 last2);
template<class ForwardIt1, class ForwardIt2, class BinaryPred>
constexpr ForwardIt1
search(ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, ForwardIt2 last2,
BinaryPred pred);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2>
ForwardIt1
search(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, ForwardIt2 last2);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryPred>
ForwardIt1
search(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, ForwardIt2 last2,
BinaryPred pred);
namespace ranges {
template<ForwardIterator I1, Sentinel<I1> S1, ForwardIterator I2,
Sentinel<I2> S2, class Pred = ranges::equal_to,
class Proj1 = identity, class Proj2 = identity>
requires IndirectlyComparable<I1, I2, Pred, Proj1, Proj2>
constexpr subrange<I1>
search(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});
template<ForwardRange R1, ForwardRange R2, class Pred = ranges::equal_to,
class Proj1 = identity, class Proj2 = identity>
requires IndirectlyComparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr safe_subrange_t<R1>
search(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});
}
template<class ForwardIt, class Size, class T>
constexpr ForwardIt
search_n(ForwardIt first, ForwardIt last, Size count, const T& value);
template<class ForwardIt, class Size, class T, class BinaryPred>
constexpr ForwardIt
search_n(ForwardIt first, ForwardIt last,
Size count, const T& value, BinaryPred pred);
template<class ExecutionPolicy, class ForwardIt, class Size, class T>
ForwardIt
search_n(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, Size count, const T& value);
template<class ExecutionPolicy, class ForwardIt, class Size, class T, class BinaryPred>
ForwardIt
search_n(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last,
Size count, const T& value, BinaryPred pred);
namespace ranges {
template<ForwardIterator I, Sentinel<I> S, class T,
class Pred = ranges::equal_to, class Proj = identity>
requires IndirectlyComparable<I, const T*, Pred, Proj>
constexpr subrange<I>
search_n(I first, S last, iter_difference_t<I> count,
const T& value, Pred pred = {}, Proj proj = {});
template<ForwardRange R, class T, class Pred = ranges::equal_to,
class Proj = identity>
requires IndirectlyComparable<iterator_t<R>, const T*, Pred, Proj>
constexpr safe_subrange_t<R>
search_n(R&& r, iter_difference_t<iterator_t<R>> count,
const T& value, Pred pred = {}, Proj proj = {});
}
template<class ForwardIt, class Searcher>
constexpr ForwardIt
search(ForwardIt first, ForwardIt last, const Searcher& searcher);
// mutating sequence operations:
// copy:
template<class InputIt, class OutputIt>
constexpr OutputIt copy(InputIt first, InputIt last, OutputIt result);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2>
ForwardIt2 copy(ExecutionPolicy&& exec,
ForwardIt1 first, ForwardIt1 last, ForwardIt2 result);
namespace ranges {
template<class I, class O>
struct copy_result {
[[no_unique_address]] I in;
[[no_unique_address]] O out;
template<class I2, class O2>
requires ConvertibleTo<const I&, I2> && ConvertibleTo<const O&, O2>
operator copy_result<I2, O2>() const & {
return {in, out};
}
template<class I2, class O2>
requires ConvertibleTo<I, I2> && ConvertibleTo<O, O2>
operator copy_result<I2, O2>() && {
return {std::move(in), std::move(out)};
}
};
template<InputIterator I, Sentinel<I> S, WeaklyIncrementable O>
requires IndirectlyCopyable<I, O>
constexpr copy_result<I, O>
copy(I first, S last, O result);
template<InputRange R, WeaklyIncrementable O>
requires IndirectlyCopyable<iterator_t<R>, O>
constexpr copy_result<safe_iterator_t<R>, O>
copy(R&& r, O result);
}
template<class InputIt, class Size, class OutputIt>
constexpr OutputIt copy_n(InputIt first, Size n, OutputIt result);
template<class ExecutionPolicy, class ForwardIt1, class Size, class ForwardIt2>
ForwardIt2 copy_n(ExecutionPolicy&& exec,
ForwardIt1 first, Size n, ForwardIt2 result);
namespace ranges {
template<class I, class O>
using copy_n_result = copy_result<I, O>;
template<InputIterator I, WeaklyIncrementable O>
requires IndirectlyCopyable<I, O>
constexpr copy_n_result<I, O>
copy_n(I first, iter_difference_t<I> n, O result);
}
template<class InputIt, class OutputIt, class Pred>
constexpr OutputIt copy_if(InputIt first, InputIt last, OutputIt result, Pred pred);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class Pred>
ForwardIt2 copy_if(ExecutionPolicy&& exec,
ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, Pred pred);
namespace ranges {
template<class I, class O>
using copy_if_result = copy_result<I, O>;
template<InputIterator I, Sentinel<I> S, WeaklyIncrementable O, class Proj = identity,
IndirectUnaryPredicate<projected<I, Proj>> Pred>
requires IndirectlyCopyable<I, O>
constexpr copy_if_result<I, O>
copy_if(I first, S last, O result, Pred pred, Proj proj = {});
template<InputRange R, WeaklyIncrementable O, class Proj = identity,
IndirectUnaryPredicate<projected<iterator_t<R>, Proj>> Pred>
requires IndirectlyCopyable<iterator_t<R>, O>
constexpr copy_if_result<safe_iterator_t<R>, O>
copy_if(R&& r, O result, Pred pred, Proj proj = {});
}
template<class BidirectionalIt1, class BidirectionalIt2>
constexpr BidirectionalIt2
copy_backward(BidirectionalIt1 first, BidirectionalIt1 last,
BidirectionalIt2 result);
namespace ranges {
template<class I1, class I2>
using copy_backward_result = copy_result<I1, I2>;
template<BidirectionalIterator I1, Sentinel<I1> S1, BidirectionalIterator I2>
requires IndirectlyCopyable<I1, I2>
constexpr copy_backward_result<I1, I2>
copy_backward(I1 first, S1 last, I2 result);
template<BidirectionalRange R, BidirectionalIterator I>
requires IndirectlyCopyable<iterator_t<R>, I>
constexpr copy_backward_result<safe_iterator_t<R>, I>
copy_backward(R&& r, I result);
}
// move:
template<class InputIt, class OutputIt>
constexpr OutputIt move(InputIt first, InputIt last, OutputIt result);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2>
ForwardIt2 move(ExecutionPolicy&& exec,
ForwardIt1 first, ForwardIt1 last, ForwardIt2 result);
namespace ranges {
template<class I, class O>
using move_result = copy_result<I, O>;
template<InputIterator I, Sentinel<I> S, WeaklyIncrementable O>
requires IndirectlyMovable<I, O>
constexpr move_result<I, O>
move(I first, S last, O result);
template<InputRange R, WeaklyIncrementable O>
requires IndirectlyMovable<iterator_t<R>, O>
constexpr move_result<safe_iterator_t<R>, O>
move(R&& r, O result);
}
template<class BidirectionalIt1, class BidirectionalIt2>
constexpr BidirectionalIt2
move_backward(BidirectionalIt1 first, BidirectionalIt1 last,
BidirectionalIt2 result);
namespace ranges {
template<class I1, class I2>
using move_backward_result = copy_result<I1, I2>;
template<BidirectionalIterator I1, Sentinel<I1> S1, BidirectionalIterator I2>
requires IndirectlyMovable<I1, I2>
constexpr move_backward_result<I1, I2>
move_backward(I1 first, S1 last, I2 result);
template<BidirectionalRange R, BidirectionalIterator I>
requires IndirectlyMovable<iterator_t<R>, I>
constexpr move_backward_result<safe_iterator_t<R>, I>
move_backward(R&& r, I result);
}
// swap:
template<class ForwardIt1, class ForwardIt2>
constexpr ForwardIt2 swap_ranges(ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2>
ForwardIt2 swap_ranges(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2);
namespace ranges {
template<class I1, class I2>
using swap_ranges_result = mismatch_result<I1, I2>;
template<InputIterator I1, Sentinel<I1> S1, InputIterator I2, Sentinel<I2> S2>
requires IndirectlySwappable<I1, I2>
constexpr swap_ranges_result<I1, I2>
swap_ranges(I1 first1, S1 last1, I2 first2, S2 last2);
template<InputRange R1, InputRange R2>
requires IndirectlySwappable<iterator_t<R1>, iterator_t<R2>>
constexpr swap_ranges_result<safe_iterator_t<R1>, safe_iterator_t<R2>>
swap_ranges(R1&& r1, R2&& r2);
}
template<class ForwardIt1, class ForwardIt2>
constexpr void iter_swap(ForwardIt1 a, ForwardIt2 b);
// transform:
template<class InputIt, class OutputIt, class UnaryOperation>
constexpr OutputIt
transform(InputIt first1, InputIt last1, OutputIt result, UnaryOperation op);
template<class InputIt1, class InputIt2, class OutputIt, class BinaryOperation>
constexpr OutputIt
transform(InputIt1 first1, InputIt1 last1, InputIt2 first2, OutputIt result,
BinaryOperation binary_op);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class UnaryOperation>
ForwardIt2
transform(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 result, UnaryOperation op);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2,
class ForwardIt, class BinaryOperation>
ForwardIt
transform(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, ForwardIt result,
BinaryOperation binary_op);
namespace ranges {
template<class I, class O>
using unary_transform_result = copy_result<I, O>;
template<InputIterator I, Sentinel<I> S, WeaklyIncrementable O,
CopyConstructible F, class Proj = identity>
requires Writable<O, indirect_result_t<F&, projected<I, Proj>>>
constexpr unary_transform_result<I, O>
transform(I first1, S last1, O result, F op, Proj proj = {});
template<InputRange R, WeaklyIncrementable O, CopyConstructible F,
class Proj = identity>
requires Writable<O, indirect_result_t<F&, projected<iterator_t<R>, Proj>>>
constexpr unary_transform_result<safe_iterator_t<R>, O>
transform(R&& r, O result, F op, Proj proj = {});
template<class I1, class I2, class O>
struct binary_transform_result {
[[no_unique_address]] I1 in1;
[[no_unique_address]] I2 in2;
[[no_unique_address]] O out;
template<class II1, class II2, class OO>
requires ConvertibleTo<const I1&, II1> &&
ConvertibleTo<const I2&, II2> && ConvertibleTo<const O&, OO>
operator binary_transform_result<II1, II2, OO>() const & {
return {in1, in2, out};
}
template<class II1, class II2, class OO>
requires ConvertibleTo<I1, II1> &&
ConvertibleTo<I2, II2> && ConvertibleTo<O, OO>
operator binary_transform_result<II1, II2, OO>() && {
return {std::move(in1), std::move(in2), std::move(out)};
}
};
template<InputIterator I1, Sentinel<I1> S1, InputIterator I2, Sentinel<I2> S2,
WeaklyIncrementable O, CopyConstructible F, class Proj1 = identity,
class Proj2 = identity>
requires Writable<O, indirect_result_t<F&, projected<I1, Proj1>,
projected<I2, Proj2>>>
constexpr binary_transform_result<I1, I2, O>
transform(I1 first1, S1 last1, I2 first2, S2 last2, O result,
F binary_op, Proj1 proj1 = {}, Proj2 proj2 = {});
template<InputRange R1, InputRange R2, WeaklyIncrementable O,
CopyConstructible F, class Proj1 = identity, class Proj2 = identity>
requires Writable<O, indirect_result_t<F&, projected<iterator_t<R1>, Proj1>,
projected<iterator_t<R2>, Proj2>>>
constexpr binary_transform_result<safe_iterator_t<R1>, safe_iterator_t<R2>, O>
transform(R1&& r1, R2&& r2, O result,
F binary_op, Proj1 proj1 = {}, Proj2 proj2 = {});
}
// replace:
template<class ForwardIt, class T>
constexpr void replace(ForwardIt first, ForwardIt last,
const T& old_value, const T& new_value);
template<class ExecutionPolicy, class ForwardIt, class T>
void replace(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last,
const T& old_value, const T& new_value);
template<class ForwardIt, class Pred, class T>
constexpr void replace_if(ForwardIt first, ForwardIt last,
Pred pred, const T& new_value);
template<class ExecutionPolicy, class ForwardIt, class Pred, class T>
void replace_if(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last,
Pred pred, const T& new_value);
namespace ranges {
template<InputIterator I, Sentinel<I> S, class T1, class T2, class Proj = identity>
requires Writable<I, const T2&> &&
IndirectRelation<ranges::equal_to, projected<I, Proj>, const T1*>
constexpr I
replace(I first, S last, const T1& old_value, const T2& new_value, Proj proj = {});
template<InputRange R, class T1, class T2, class Proj = identity>
requires Writable<iterator_t<R>, const T2&> &&
IndirectRelation<ranges::equal_to, projected<iterator_t<R>, Proj>,
const T1*>
constexpr safe_iterator_t<R>
replace(R&& r, const T1& old_value, const T2& new_value, Proj proj = {});
template<InputIterator I, Sentinel<I> S, class T, class Proj = identity,
IndirectUnaryPredicate<projected<I, Proj>> Pred>
requires Writable<I, const T&>
constexpr I replace_if(I first, S last,
Pred pred, const T& new_value, Proj proj = {});
template<InputRange R, class T, class Proj = identity,
IndirectUnaryPredicate<projected<iterator_t<R>, Proj>> Pred>
requires Writable<iterator_t<R>, const T&>
constexpr safe_iterator_t<R>
replace_if(R&& r, Pred pred, const T& new_value, Proj proj = {});
}
template<class InputIt, class OutputIt, class T>
constexpr OutputIt replace_copy(InputIt first, InputIt last, OutputIt result,
const T& old_value, const T& new_value);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class T>
ForwardIt2 replace_copy(ExecutionPolicy&& exec,
ForwardIt1 first, ForwardIt1 last, ForwardIt2 result,
const T& old_value, const T& new_value);
template<class InputIt, class OutputIt, class Pred, class T>
constexpr OutputIt replace_copy_if(InputIt first, InputIt last, OutputIt result,
Pred pred, const T& new_value);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class Pred, class T>
ForwardIt2 replace_copy_if(ExecutionPolicy&& exec,
ForwardIt1 first, ForwardIt1 last, ForwardIt2 result,
Pred pred, const T& new_value);
namespace ranges {
template<class I, class O>
using replace_copy_result = copy_result<I, O>;
template<InputIterator I, Sentinel<I> S, class T1, class T2,
OutputIterator<const T2&> O, class Proj = identity>
requires IndirectlyCopyable<I, O> &&
IndirectRelation<ranges::equal_to, projected<I, Proj>, const T1*>
constexpr replace_copy_result<I, O>
replace_copy(I first, S last, O result, const T1& old_value, const T2& new_value,
Proj proj = {});
template<InputRange R, class T1, class T2, OutputIterator<const T2&> O,
class Proj = identity>
requires IndirectlyCopyable<iterator_t<R>, O> &&
IndirectRelation<ranges::equal_to, projected<iterator_t<R>, Proj>,
const T1*>
constexpr replace_copy_result<safe_iterator_t<R>, O>
replace_copy(R&& r, O result, const T1& old_value, const T2& new_value,
Proj proj = {});
template<class I, class O>
using replace_copy_if_result = copy_result<I, O>;
template<InputIterator I, Sentinel<I> S, class T, OutputIterator<const T&> O,
class Proj = identity, IndirectUnaryPredicate<projected<I, Proj>> Pred>
requires IndirectlyCopyable<I, O>
constexpr replace_copy_if_result<I, O>
replace_copy_if(I first, S last, O result, Pred pred, const T& new_value,
Proj proj = {});
template<InputRange R, class T, OutputIterator<const T&> O, class Proj = identity,
IndirectUnaryPredicate<projected<iterator_t<R>, Proj>> Pred>
requires IndirectlyCopyable<iterator_t<R>, O>
constexpr replace_copy_if_result<safe_iterator_t<R>, O>
replace_copy_if(R&& r, O result, Pred pred, const T& new_value,
Proj proj = {});
}
// fill:
template<class ForwardIt, class T>
constexpr void fill(ForwardIt first, ForwardIt last, const T& value);
template<class ExecutionPolicy, class ForwardIt, class T>
void fill(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, const T& value);
template<class OutputIt, class Size, class T>
constexpr OutputIt fill_n(OutputIt first, Size n, const T& value);
template<class ExecutionPolicy, class ForwardIt, class Size, class T>
ForwardIt fill_n(ExecutionPolicy&& exec,
ForwardIt first, Size n, const T& value);
namespace ranges {
template<class T, OutputIterator<const T&> O, Sentinel<O> S>
constexpr O fill(O first, S last, const T& value);
template<class T, OutputRange<const T&> R>
constexpr safe_iterator_t<R> fill(R&& r, const T& value);
template<class T, OutputIterator<const T&> O>
constexpr O fill_n(O first, iter_difference_t<O> n, const T& value);
}
// generate:
template<class ForwardIt, class Generator>
constexpr void generate(ForwardIt first, ForwardIt last, Generator gen);
template<class ExecutionPolicy, class ForwardIt, class Generator>
void generate(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, Generator gen);
template<class OutputIt, class Size, class Generator>
constexpr OutputIt generate_n(OutputIt first, Size n, Generator gen);
template<class ExecutionPolicy, class ForwardIt, class Size, class Generator>
ForwardIt generate_n(ExecutionPolicy&& exec,
ForwardIt first, Size n, Generator gen);
namespace ranges {
template<Iterator O, Sentinel<O> S, CopyConstructible F>
requires Invocable<F&> && Writable<O, invoke_result_t<F&>>
constexpr O generate(O first, S last, F gen);
template<class R, CopyConstructible F>
requires Invocable<F&> && OutputRange<R, invoke_result_t<F&>>
constexpr safe_iterator_t<R> generate(R&& r, F gen);
template<Iterator O, CopyConstructible F>
requires Invocable<F&> && Writable<O, invoke_result_t<F&>>
constexpr O generate_n(O first, iter_difference_t<O> n, F gen);
}
// remove:
template<class ForwardIt, class T>
constexpr ForwardIt remove(ForwardIt first, ForwardIt last, const T& value);
template<class ExecutionPolicy, class ForwardIt, class T>
ForwardIt remove(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, const T& value);
template<class ForwardIt, class Pred>
constexpr ForwardIt remove_if(ForwardIt first, ForwardIt last, Pred pred);
template<class ExecutionPolicy, class ForwardIt, class Pred>
ForwardIt remove_if(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, Pred pred);
namespace ranges {
template<Permutable I, Sentinel<I> S, class T, class Proj = identity>
requires IndirectRelation<ranges::equal_to, projected<I, Proj>, const T*>
constexpr I remove(I first, S last, const T& value, Proj proj = {});
template<ForwardRange R, class T, class Proj = identity>
requires Permutable<iterator_t<R>> &&
IndirectRelation<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
constexpr safe_iterator_t<R>
remove(R&& r, const T& value, Proj proj = {});
template<Permutable I, Sentinel<I> S, class Proj = identity,
IndirectUnaryPredicate<projected<I, Proj>> Pred>
constexpr I remove_if(I first, S last, Pred pred, Proj proj = {});
template<ForwardRange R, class Proj = identity,
IndirectUnaryPredicate<projected<iterator_t<R>, Proj>> Pred>
requires Permutable<iterator_t<R>>
constexpr safe_iterator_t<R>
remove_if(R&& r, Pred pred, Proj proj = {});
}
template<class InputIt, class OutputIt, class T>
constexpr OutputIt
remove_copy(InputIt first, InputIt last, OutputIt result, const T& value);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class T>
ForwardIt2
remove_copy(ExecutionPolicy&& exec,
ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, const T& value);
template<class InputIt, class OutputIt, class Pred>
constexpr OutputIt
remove_copy_if(InputIt first, InputIt last, OutputIt result, Pred pred);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class Pred>
ForwardIt2
remove_copy_if(ExecutionPolicy&& exec,
ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, Pred pred);
namespace ranges {
template<class I, class O>
using remove_copy_result = copy_result<I, O>;
template<InputIterator I, Sentinel<I> S, WeaklyIncrementable O, class T,
class Proj = identity>
requires IndirectlyCopyable<I, O> &&
IndirectRelation<ranges::equal_to, projected<I, Proj>, const T*>
constexpr remove_copy_result<I, O>
remove_copy(I first, S last, O result, const T& value, Proj proj = {});
template<InputRange R, WeaklyIncrementable O, class T, class Proj = identity>
requires IndirectlyCopyable<iterator_t<R>, O> &&
IndirectRelation<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
constexpr remove_copy_result<safe_iterator_t<R>, O>
remove_copy(R&& r, O result, const T& value, Proj proj = {});
template<class I, class O>
using remove_copy_if_result = copy_result<I, O>;
template<InputIterator I, Sentinel<I> S, WeaklyIncrementable O,
class Proj = identity, IndirectUnaryPredicate<projected<I, Proj>> Pred>
requires IndirectlyCopyable<I, O>
constexpr remove_copy_if_result<I, O>
remove_copy_if(I first, S last, O result, Pred pred, Proj proj = {});
template<InputRange R, WeaklyIncrementable O, class Proj = identity,
IndirectUnaryPredicate<projected<iterator_t<R>, Proj>> Pred>
requires IndirectlyCopyable<iterator_t<R>, O>
constexpr remove_copy_if_result<safe_iterator_t<R>, O>
remove_copy_if(R&& r, O result, Pred pred, Proj proj = {});
}
// unique:
template<class ForwardIt>
constexpr ForwardIt unique(ForwardIt first, ForwardIt last);
template<class ForwardIt, class BinaryPred>
constexpr ForwardIt unique(ForwardIt first, ForwardIt last, BinaryPred pred);
template<class ExecutionPolicy, class ForwardIt>
ForwardIt unique(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last);
template<class ExecutionPolicy, class ForwardIt, class BinaryPred>
ForwardIt unique(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, BinaryPred pred);
namespace ranges {
template<Permutable I, Sentinel<I> S, class Proj = identity,
IndirectRelation<projected<I, Proj>> C = ranges::equal_to>
constexpr I unique(I first, S last, C comp = {}, Proj proj = {});
template<ForwardRange R, class Proj = identity,
IndirectRelation<projected<iterator_t<R>, Proj>> C = ranges::equal_to>
requires Permutable<iterator_t<R>>
constexpr safe_iterator_t<R>
unique(R&& r, C comp = {}, Proj proj = {});
}
template<class InputIt, class OutputIt>
constexpr OutputIt
unique_copy(InputIt first, InputIt last, OutputIt result);
template<class InputIt, class OutputIt, class BinaryPred>
constexpr OutputIt
unique_copy(InputIt first, InputIt last, OutputIt result, BinaryPred pred);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2>
ForwardIt2
unique_copy(ExecutionPolicy&& exec,
ForwardIt1 first, ForwardIt1 last, ForwardIt2 result);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryPred>
ForwardIt2
unique_copy(ExecutionPolicy&& exec,
ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, BinaryPred pred);
namespace ranges {
template<class I, class O>
using unique_copy_result = copy_result<I, O>;
template<InputIterator I, Sentinel<I> S, WeaklyIncrementable O,
class Proj = identity,
IndirectRelation<projected<I, Proj>> C = ranges::equal_to>
requires IndirectlyCopyable<I, O> &&
(ForwardIterator<I> ||
(InputIterator<O> && Same<iter_value_t<I>, iter_value_t<O>>) ||
IndirectlyCopyableStorable<I, O>)
constexpr unique_copy_result<I, O>
unique_copy(I first, S last, O result, C comp = {}, Proj proj = {});
template<InputRange R, WeaklyIncrementable O, class Proj = identity,
IndirectRelation<projected<iterator_t<R>, Proj>> C = ranges::equal_to>
requires IndirectlyCopyable<iterator_t<R>, O> &&
(ForwardIterator<iterator_t<R>> ||
(InputIterator<O> && Same<iter_value_t<iterator_t<R>>, iter_value_t<O>>) ||
IndirectlyCopyableStorable<iterator_t<R>, O>)
constexpr unique_copy_result<safe_iterator_t<R>, O>
unique_copy(R&& r, O result, C comp = {}, Proj proj = {});
}
// reverse:
template<class BidirectionalIt>
constexpr void reverse(BidirectionalIt first, BidirectionalIt last);
template<class ExecutionPolicy, class BidirectionalIt>
void reverse(ExecutionPolicy&& exec,
BidirectionalIt first, BidirectionalIt last);
namespace ranges {
template<BidirectionalIterator I, Sentinel<I> S>
requires Permutable<I>
constexpr I reverse(I first, S last);
template<BidirectionalRange R>
requires Permutable<iterator_t<R>>
constexpr safe_iterator_t<R> reverse(R&& r);
}
template<class BidirectionalIt, class OutputIt>
constexpr OutputIt
reverse_copy(BidirectionalIt first, BidirectionalIt last, OutputIt result);
template<class ExecutionPolicy, class BidirectionalIt, class ForwardIt>
ForwardIt
reverse_copy(ExecutionPolicy&& exec,
BidirectionalIt first, BidirectionalIt last, ForwardIt result);
namespace ranges {
template<class I, class O>
using reverse_copy_result = copy_result<I, O>;
template<BidirectionalIterator I, Sentinel<I> S, WeaklyIncrementable O>
requires IndirectlyCopyable<I, O>
constexpr reverse_copy_result<I, O>
reverse_copy(I first, S last, O result);
template<BidirectionalRange R, WeaklyIncrementable O>
requires IndirectlyCopyable<iterator_t<R>, O>
constexpr reverse_copy_result<safe_iterator_t<R>, O>
reverse_copy(R&& r, O result);
}
// rotate:
template<class ForwardIt>
constexpr ForwardIt rotate(ForwardIt first, ForwardIt middle, ForwardIt last);
template<class ExecutionPolicy, class ForwardIt>
ForwardIt rotate(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt middle, ForwardIt last);
namespace ranges {
template<Permutable I, Sentinel<I> S>
constexpr subrange<I> rotate(I first, I middle, S last);
template<ForwardRange R>
requires Permutable<iterator_t<R>>
constexpr safe_subrange_t<R> rotate(R&& r, iterator_t<R> middle);
}
template<class ForwardIt, class OutputIt>
constexpr OutputIt
rotate_copy(ForwardIt first, ForwardIt middle, ForwardIt last, OutputIt result);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2>
ForwardIt2
rotate_copy(ExecutionPolicy&& exec,
ForwardIt1 first, ForwardIt1 middle, ForwardIt1 last, ForwardIt2 result);
namespace ranges {
template<class I, class O>
using rotate_copy_result = copy_result<I, O>;
template<ForwardIterator I, Sentinel<I> S, WeaklyIncrementable O>
requires IndirectlyCopyable<I, O>
constexpr rotate_copy_result<I, O>
rotate_copy(I first, I middle, S last, O result);
template<ForwardRange R, WeaklyIncrementable O>
requires IndirectlyCopyable<iterator_t<R>, O>
constexpr rotate_copy_result<safe_iterator_t<R>, O>
rotate_copy(R&& r, iterator_t<R> middle, O result);
}
// sample:
template<class PopulationIt, class SampleIt,
class Distance, class UniformRndBitGen>
SampleIt sample(PopulationIt first, PopulationIt last, SampleIt out, Distance n,
UniformRndBitGen&& g);
// shuffle:
template<class RandomAccessIt, class UniformRndBitGen>
void shuffle(RandomAccessIt first, RandomAccessIt last, UniformRndBitGen&& g);
namespace ranges {
template<RandomAccessIterator I, Sentinel<I> S, class Gen>
requires Permutable<I> &&
UniformRandomBitGenerator<remove_reference_t<Gen>> &&
ConvertibleTo<invoke_result_t<Gen&>, iter_difference_t<I>>
I shuffle(I first, S last, Gen&& g);
template<RandomAccessRange R, class Gen>
requires Permutable<iterator_t<R>> &&
UniformRandomBitGenerator<remove_reference_t<Gen>> &&
ConvertibleTo<invoke_result_t<Gen&>, iter_difference_t<iterator_t<R>>>
safe_iterator_t<R> shuffle(R&& r, Gen&& g);
}
// shift:
template<class ForwardIt>
constexpr ForwardIt
shift_left(ForwardIt first, ForwardIt last,
typename iterator_traits<ForwardIt>::difference_type n);
template<class ExecutionPolicy, class ForwardIt>
ForwardIt
shift_left(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last,
typename iterator_traits<ForwardIt>::difference_type n);
template<class ForwardIt>
constexpr ForwardIt
shift_right(ForwardIt first, ForwardIt last,
typename iterator_traits<ForwardIt>::difference_type n);
template<class ExecutionPolicy, class ForwardIt>
ForwardIt
shift_right(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last,
typename iterator_traits<ForwardIt>::difference_type n);
// sorting and related operations:
// sorting:
template<class RandomAccessIt>
constexpr void sort(RandomAccessIt first, RandomAccessIt last);
template<class RandomAccessIt, class Compare>
constexpr void sort(RandomAccessIt first, RandomAccessIt last, Compare comp);
template<class ExecutionPolicy, class RandomAccessIt>
void sort(ExecutionPolicy&& exec,
RandomAccessIt first, RandomAccessIt last);
template<class ExecutionPolicy, class RandomAccessIt, class Compare>
void sort(ExecutionPolicy&& exec,
RandomAccessIt first, RandomAccessIt last, Compare comp);
namespace ranges {
template<RandomAccessIterator I, Sentinel<I> S, class Comp = ranges::less,
class Proj = identity>
requires Sortable<I, Comp, Proj>
constexpr I
sort(I first, S last, Comp comp = {}, Proj proj = {});
template<RandomAccessRange R, class Comp = ranges::less, class Proj = identity>
requires Sortable<iterator_t<R>, Comp, Proj>
constexpr safe_iterator_t<R>
sort(R&& r, Comp comp = {}, Proj proj = {});
}
template<class RandomAccessIt>
void stable_sort(RandomAccessIt first, RandomAccessIt last);
template<class RandomAccessIt, class Compare>
void stable_sort(RandomAccessIt first, RandomAccessIt last, Compare comp);
template<class ExecutionPolicy, class RandomAccessIt>
void stable_sort(ExecutionPolicy&& exec,
RandomAccessIt first, RandomAccessIt last);
template<class ExecutionPolicy, class RandomAccessIt, class Compare>
void stable_sort(ExecutionPolicy&& exec,
RandomAccessIt first, RandomAccessIt last, Compare comp);
namespace ranges {
template<RandomAccessIterator I, Sentinel<I> S, class Comp = ranges::less,
class Proj = identity>
requires Sortable<I, Comp, Proj>
I stable_sort(I first, S last, Comp comp = {}, Proj proj = {});
template<RandomAccessRange R, class Comp = ranges::less, class Proj = identity>
requires Sortable<iterator_t<R>, Comp, Proj>
safe_iterator_t<R>
stable_sort(R&& r, Comp comp = {}, Proj proj = {});
}
template<class RandomAccessIt>
constexpr void partial_sort(RandomAccessIt first, RandomAccessIt middle,
RandomAccessIt last);
template<class RandomAccessIt, class Compare>
constexpr void partial_sort(RandomAccessIt first, RandomAccessIt middle,
RandomAccessIt last, Compare comp);
template<class ExecutionPolicy, class RandomAccessIt>
void partial_sort(ExecutionPolicy&& exec,
RandomAccessIt first, RandomAccessIt middle, RandomAccessIt last);
template<class ExecutionPolicy, class RandomAccessIt, class Compare>
void partial_sort(ExecutionPolicy&& exec,
RandomAccessIt first, RandomAccessIt middle, RandomAccessIt last,
Compare comp);
namespace ranges {
template<RandomAccessIterator I, Sentinel<I> S, class Comp = ranges::less,
class Proj = identity>
requires Sortable<I, Comp, Proj>
constexpr I
partial_sort(I first, I middle, S last, Comp comp = {}, Proj proj = {});
template<RandomAccessRange R, class Comp = ranges::less, class Proj = identity>
requires Sortable<iterator_t<R>, Comp, Proj>
constexpr safe_iterator_t<R>
partial_sort(R&& r, iterator_t<R> middle, Comp comp = {},
Proj proj = {});
}
template<class InputIt, class RandomAccessIt>
constexpr RandomAccessIt
partial_sort_copy(InputIt first, InputIt last,
RandomAccessIt result_first, RandomAccessIt result_last);
template<class InputIt, class RandomAccessIt, class Compare>
constexpr RandomAccessIt
partial_sort_copy(InputIt first, InputIt last,
RandomAccessIt result_first, RandomAccessIt result_last,
Compare comp);
template<class ExecutionPolicy, class ForwardIt, class RandomAccessIt>
RandomAccessIt
partial_sort_copy(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last,
RandomAccessIt result_first, RandomAccessIt result_last);
template<class ExecutionPolicy, class ForwardIt, class RandomAccessIt, class Compare>
RandomAccessIt
partial_sort_copy(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last,
RandomAccessIt result_first, RandomAccessIt result_last,
Compare comp);
namespace ranges {
template<InputIterator I1, Sentinel<I1> S1, RandomAccessIterator I2, Sentinel<I2> S2,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>
requires IndirectlyCopyable<I1, I2> && Sortable<I2, Comp, Proj2> &&
IndirectStrictWeakOrder<Comp, projected<I1, Proj1>, projected<I2, Proj2>>
constexpr I2
partial_sort_copy(I1 first, S1 last, I2 result_first, S2 result_last,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<InputRange R1, RandomAccessRange R2, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>
requires IndirectlyCopyable<iterator_t<R1>, iterator_t<R2>> &&
Sortable<iterator_t<R2>, Comp, Proj2> &&
IndirectStrictWeakOrder<Comp, projected<iterator_t<R1>, Proj1>,
projected<iterator_t<R2>, Proj2>>
constexpr safe_iterator_t<R2>
partial_sort_copy(R1&& r, R2&& result_r, Comp comp = {},
Proj1 proj1 = {}, Proj2 proj2 = {});
}
template<class ForwardIt>
constexpr bool is_sorted(ForwardIt first, ForwardIt last);
template<class ForwardIt, class Compare>
constexpr bool is_sorted(ForwardIt first, ForwardIt last, Compare comp);
template<class ExecutionPolicy, class ForwardIt>
bool is_sorted(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last);
template<class ExecutionPolicy, class ForwardIt, class Compare>
bool is_sorted(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, Compare comp);
namespace ranges {
template<ForwardIterator I, Sentinel<I> S, class Proj = identity,
IndirectStrictWeakOrder<projected<I, Proj>> Comp = ranges::less>
constexpr bool is_sorted(I first, S last, Comp comp = {}, Proj proj = {});
template<ForwardRange R, class Proj = identity,
IndirectStrictWeakOrder<projected<iterator_t<R>, Proj>> Comp = ranges::less>
constexpr bool is_sorted(R&& r, Comp comp = {}, Proj proj = {});
}
template<class ForwardIt>
constexpr ForwardIt
is_sorted_until(ForwardIt first, ForwardIt last);
template<class ForwardIt, class Compare>
constexpr ForwardIt
is_sorted_until(ForwardIt first, ForwardIt last, Compare comp);
template<class ExecutionPolicy, class ForwardIt>
ForwardIt
is_sorted_until(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last);
template<class ExecutionPolicy, class ForwardIt, class Compare>
ForwardIt
is_sorted_until(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, Compare comp);
namespace ranges {
template<ForwardIterator I, Sentinel<I> S, class Proj = identity,
IndirectStrictWeakOrder<projected<I, Proj>> Comp = ranges::less>
constexpr I is_sorted_until(I first, S last, Comp comp = {}, Proj proj = {});
template<ForwardRange R, class Proj = identity,
IndirectStrictWeakOrder<projected<iterator_t<R>, Proj>> Comp = ranges::less>
constexpr safe_iterator_t<R>
is_sorted_until(R&& r, Comp comp = {}, Proj proj = {});
}
// Nth element:
template<class RandomAccessIt>
constexpr void nth_element(RandomAccessIt first, RandomAccessIt nth,
RandomAccessIt last);
template<class RandomAccessIt, class Compare>
constexpr void nth_element(RandomAccessIt first, RandomAccessIt nth,
RandomAccessIt last, Compare comp);
template<class ExecutionPolicy, class RandomAccessIt>
void nth_element(ExecutionPolicy&& exec,
RandomAccessIt first, RandomAccessIt nth,
RandomAccessIt last);
template<class ExecutionPolicy, class RandomAccessIt, class Compare>
void nth_element(ExecutionPolicy&& exec,
RandomAccessIt first, RandomAccessIt nth,
RandomAccessIt last, Compare comp);
namespace ranges {
template<RandomAccessIterator I, Sentinel<I> S, class Comp = ranges::less,
class Proj = identity>
requires Sortable<I, Comp, Proj>
constexpr I
nth_element(I first, I nth, S last, Comp comp = {}, Proj proj = {});
template<RandomAccessRange R, class Comp = ranges::less, class Proj = identity>
requires Sortable<iterator_t<R>, Comp, Proj>
constexpr safe_iterator_t<R>
nth_element(R&& r, iterator_t<R> nth, Comp comp = {}, Proj proj = {});
}
// binary search:
template<class ForwardIt, class T>
constexpr ForwardIt
lower_bound(ForwardIt first, ForwardIt last, const T& value);
template<class ForwardIt, class T, class Compare>
constexpr ForwardIt
lower_bound(ForwardIt first, ForwardIt last, const T& value, Compare comp);
namespace ranges {
template<ForwardIterator I, Sentinel<I> S, class T, class Proj = identity,
IndirectStrictWeakOrder<const T*, projected<I, Proj>> Comp = ranges::less>
constexpr I lower_bound(I first, S last, const T& value, Comp comp = {},
Proj proj = {});
template<ForwardRange R, class T, class Proj = identity,
IndirectStrictWeakOrder<const T*, projected<iterator_t<R>, Proj>> Comp =
ranges::less>
constexpr safe_iterator_t<R>
lower_bound(R&& r, const T& value, Comp comp = {}, Proj proj = {});
}
template<class ForwardIt, class T>
constexpr ForwardIt
upper_bound(ForwardIt first, ForwardIt last, const T& value);
template<class ForwardIt, class T, class Compare>
constexpr ForwardIt
upper_bound(ForwardIt first, ForwardIt last, const T& value, Compare comp);
namespace ranges {
template<ForwardIterator I, Sentinel<I> S, class T, class Proj = identity,
IndirectStrictWeakOrder<const T*, projected<I, Proj>> Comp = ranges::less>
constexpr I upper_bound(I first, S last,
const T& value, Comp comp = {}, Proj proj = {});
template<ForwardRange R, class T, class Proj = identity,
IndirectStrictWeakOrder<const T*, projected<iterator_t<R>, Proj>> Comp =
ranges::less>
constexpr safe_iterator_t<R>
upper_bound(R&& r, const T& value, Comp comp = {}, Proj proj = {});
}
template<class ForwardIt, class T>
constexpr pair<ForwardIt, ForwardIt>
equal_range(ForwardIt first, ForwardIt last, const T& value);
template<class ForwardIt, class T, class Compare>
constexpr pair<ForwardIt, ForwardIt>
equal_range(ForwardIt first, ForwardIt last, const T& value, Compare comp);
namespace ranges {
template<ForwardIterator I, Sentinel<I> S, class T, class Proj = identity,
IndirectStrictWeakOrder<const T*, projected<I, Proj>> Comp = ranges::less>
constexpr subrange<I>
equal_range(I first, S last, const T& value, Comp comp = {}, Proj proj = {});
template<ForwardRange R, class T, class Proj = identity,
IndirectStrictWeakOrder<const T*, projected<iterator_t<R>, Proj>> Comp =
ranges::less>
constexpr safe_subrange_t<R>
equal_range(R&& r, const T& value, Comp comp = {}, Proj proj = {});
}
template<class ForwardIt, class T>
constexpr bool
binary_search(ForwardIt first, ForwardIt last, const T& value);
template<class ForwardIt, class T, class Compare>
constexpr bool
binary_search(ForwardIt first, ForwardIt last, const T& value, Compare comp);
namespace ranges {
template<ForwardIterator I, Sentinel<I> S, class T, class Proj = identity,
IndirectStrictWeakOrder<const T*, projected<I, Proj>> Comp = ranges::less>
constexpr bool binary_search(I first, S last, const T& value, Comp comp = {},
Proj proj = {});
template<ForwardRange R, class T, class Proj = identity,
IndirectStrictWeakOrder<const T*, projected<iterator_t<R>, Proj>> Comp =
ranges::less>
constexpr bool binary_search(R&& r, const T& value, Comp comp = {},
Proj proj = {});
}
// partitions:
template<class InputIt, class Pred>
constexpr bool is_partitioned(InputIt first, InputIt last, Pred pred);
template<class ExecutionPolicy, class ForwardIt, class Pred>
bool is_partitioned(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, Pred pred);
namespace ranges {
template<InputIterator I, Sentinel<I> S, class Proj = identity,
IndirectUnaryPredicate<projected<I, Proj>> Pred>
constexpr bool is_partitioned(I first, S last, Pred pred, Proj proj = {});
template<InputRange R, class Proj = identity,
IndirectUnaryPredicate<projected<iterator_t<R>, Proj>> Pred>
constexpr bool is_partitioned(R&& r, Pred pred, Proj proj = {});
}
template<class ForwardIt, class Pred>
constexpr ForwardIt partition(ForwardIt first, ForwardIt last, Pred pred);
template<class ExecutionPolicy, class ForwardIt, class Pred>
ForwardIt partition(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, Pred pred);
namespace ranges {
template<Permutable I, Sentinel<I> S, class Proj = identity,
IndirectUnaryPredicate<projected<I, Proj>> Pred>
constexpr I
partition(I first, S last, Pred pred, Proj proj = {});
template<ForwardRange R, class Proj = identity,
IndirectUnaryPredicate<projected<iterator_t<R>, Proj>> Pred>
requires Permutable<iterator_t<R>>
constexpr safe_iterator_t<R>
partition(R&& r, Pred pred, Proj proj = {});
}
template<class BidirectionalIt, class Pred>
BidirectionalIt stable_partition(BidirectionalIt first, BidirectionalIt last,
Pred pred);
template<class ExecutionPolicy, class BidirectionalIt, class Pred>
BidirectionalIt stable_partition(ExecutionPolicy&& exec,
BidirectionalIt first, BidirectionalIt last,
Pred pred);
namespace ranges {
template<BidirectionalIterator I, Sentinel<I> S, class Proj = identity,
IndirectUnaryPredicate<projected<I, Proj>> Pred>
requires Permutable<I>
I stable_partition(I first, S last, Pred pred, Proj proj = {});
template<BidirectionalRange R, class Proj = identity,
IndirectUnaryPredicate<projected<iterator_t<R>, Proj>> Pred>
requires Permutable<iterator_t<R>>
safe_iterator_t<R> stable_partition(R&& r, Pred pred, Proj proj = {});
}
template<class InputIt, class OutputIt1, class OutputIt2, class Pred>
constexpr pair<OutputIt1, OutputIt2>
partition_copy(InputIt first, InputIt last, OutputIt1 out_true, OutputIt2 out_false,
Pred pred);
template<class ExecutionPolicy, class ForwardIt, class ForwardIt1,
class ForwardIt2, class Pred>
pair<ForwardIt1, ForwardIt2>
partition_copy(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last,
ForwardIt1 out_true, ForwardIt2 out_false,
Pred pred);
namespace ranges {
template<class I, class O1, class O2>
struct partition_copy_result {
[[no_unique_address]] I in;
[[no_unique_address]] O1 out1;
[[no_unique_address]] O2 out2;
template<class II, class OO1, class OO2>
requires ConvertibleTo<const I&, II> &&
ConvertibleTo<const O1&, OO1> && ConvertibleTo<const O2&, OO2>
operator partition_copy_result<II, OO1, OO2>() const & {
return {in, out1, out2};
}
template<class II, class OO1, class OO2>
requires ConvertibleTo<I, II> &&
ConvertibleTo<O1, OO1> && ConvertibleTo<O2, OO2>
operator partition_copy_result<II, OO1, OO2>() && {
return {std::move(in), std::move(out1), std::move(out2)};
}
};
template<InputIterator I, Sentinel<I> S,
WeaklyIncrementable O1, WeaklyIncrementable O2,
class Proj = identity, IndirectUnaryPredicate<projected<I, Proj>> Pred>
requires IndirectlyCopyable<I, O1> && IndirectlyCopyable<I, O2>
constexpr partition_copy_result<I, O1, O2>
partition_copy(I first, S last, O1 out_true, O2 out_false, Pred pred,
Proj proj = {});
template<InputRange R, WeaklyIncrementable O1, WeaklyIncrementable O2,
class Proj = identity,
IndirectUnaryPredicate<projected<iterator_t<R>, Proj>> Pred>
requires IndirectlyCopyable<iterator_t<R>, O1> &&
IndirectlyCopyable<iterator_t<R>, O2>
constexpr partition_copy_result<safe_iterator_t<R>, O1, O2>
partition_copy(R&& r, O1 out_true, O2 out_false, Pred pred, Proj proj = {});
}
template<class ForwardIt, class Pred>
constexpr ForwardIt
partition_point(ForwardIt first, ForwardIt last, Pred pred);
namespace ranges {
template<ForwardIterator I, Sentinel<I> S, class Proj = identity,
IndirectUnaryPredicate<projected<I, Proj>> Pred>
constexpr I partition_point(I first, S last, Pred pred, Proj proj = {});
template<ForwardRange R, class Proj = identity,
IndirectUnaryPredicate<projected<iterator_t<R>, Proj>> Pred>
constexpr safe_iterator_t<R>
partition_point(R&& r, Pred pred, Proj proj = {});
}
// merge:
template<class InputIt1, class InputIt2, class OutputIt>
constexpr OutputIt
merge(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2,
OutputIt result);
template<class InputIt1, class InputIt2, class OutputIt, class Compare>
constexpr OutputIt
merge(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2,
OutputIt result, Compare comp);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class ForwardIt>
ForwardIt
merge(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, ForwardIt2 last2,
ForwardIt result);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2,
class ForwardIt, class Compare>
ForwardIt
merge(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, ForwardIt2 last2,
ForwardIt result, Compare comp);
namespace ranges {
template<class I1, class I2, class O>
using merge_result = binary_transform_result<I1, I2, O>;
template<InputIterator I1, Sentinel<I1> S1, InputIterator I2, Sentinel<I2> S2,
WeaklyIncrementable O, class Comp = ranges::less, class Proj1 = identity,
class Proj2 = identity>
requires Mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr merge_result<I1, I2, O>
merge(I1 first1, S1 last1, I2 first2, S2 last2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<InputRange R1, InputRange R2, WeaklyIncrementable O,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>
requires Mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr merge_result<safe_iterator_t<R1>, safe_iterator_t<R2>, O>
merge(R1&& r1, R2&& r2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
}
template<class BidirectionalIt>
void inplace_merge(BidirectionalIt first,
BidirectionalIt middle,
BidirectionalIt last);
template<class BidirectionalIt, class Compare>
void inplace_merge(BidirectionalIt first,
BidirectionalIt middle,
BidirectionalIt last, Compare comp);
template<class ExecutionPolicy, class BidirectionalIt>
void inplace_merge(ExecutionPolicy&& exec,
BidirectionalIt first,
BidirectionalIt middle,
BidirectionalIt last);
template<class ExecutionPolicy, class BidirectionalIt, class Compare>
void inplace_merge(ExecutionPolicy&& exec,
BidirectionalIt first,
BidirectionalIt middle,
BidirectionalIt last, Compare comp);
namespace ranges {
template<BidirectionalIterator I, Sentinel<I> S, class Comp = ranges::less,
class Proj = identity>
requires Sortable<I, Comp, Proj>
I inplace_merge(I first, I middle, S last, Comp comp = {}, Proj proj = {});
template<BidirectionalRange R, class Comp = ranges::less, class Proj = identity>
requires Sortable<iterator_t<R>, Comp, Proj>
safe_iterator_t<R>
inplace_merge(R&& r, iterator_t<R> middle, Comp comp = {},
Proj proj = {});
}
// set operations:
template<class InputIt1, class InputIt2>
constexpr bool includes(InputIt1 first1, InputIt1 last1,
InputIt2 first2, InputIt2 last2);
template<class InputIt1, class InputIt2, class Compare>
constexpr bool includes(InputIt1 first1, InputIt1 last1,
InputIt2 first2, InputIt2 last2,
Compare comp);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2>
bool includes(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2,
class Compare>
bool includes(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2,
Compare comp);
namespace ranges {
template<InputIterator I1, Sentinel<I1> S1, InputIterator I2, Sentinel<I2> S2,
class Proj1 = identity, class Proj2 = identity,
IndirectStrictWeakOrder<projected<I1, Proj1>, projected<I2, Proj2>> Comp =
ranges::less>
constexpr bool includes(I1 first1, S1 last1, I2 first2, S2 last2, Comp comp = {},
Proj1 proj1 = {}, Proj2 proj2 = {});
template<InputRange R1, InputRange R2, class Proj1 = identity,
class Proj2 = identity,
IndirectStrictWeakOrder<projected<iterator_t<R1>, Proj1>,
projected<iterator_t<R2>, Proj2>> Comp = ranges::less>
constexpr bool includes(R1&& r1, R2&& r2, Comp comp = {},
Proj1 proj1 = {}, Proj2 proj2 = {});
}
template<class InputIt1, class InputIt2, class OutputIt>
constexpr OutputIt
set_union(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2,
OutputIt result);
template<class InputIt1, class InputIt2, class OutputIt, class Compare>
constexpr OutputIt
set_union(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2,
OutputIt result, Compare comp);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2,
class ForwardIt>
ForwardIt
set_union(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, ForwardIt2 last2,
ForwardIt result);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2,
class ForwardIt, class Compare>
ForwardIt
set_union(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, ForwardIt2 last2,
ForwardIt result, Compare comp);
namespace ranges {
template<class I1, class I2, class O>
using set_union_result = binary_transform_result<I1, I2, O>;
template<InputIterator I1, Sentinel<I1> S1, InputIterator I2, Sentinel<I2> S2,
WeaklyIncrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>
requires Mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr set_union_result<I1, I2, O>
set_union(I1 first1, S1 last1, I2 first2, S2 last2, O result, Comp comp = {},
Proj1 proj1 = {}, Proj2 proj2 = {});
template<InputRange R1, InputRange R2, WeaklyIncrementable O,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>
requires Mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr set_union_result<safe_iterator_t<R1>, safe_iterator_t<R2>, O>
set_union(R1&& r1, R2&& r2, O result, Comp comp = {},
Proj1 proj1 = {}, Proj2 proj2 = {});
}
template<class InputIt1, class InputIt2, class OutputIt>
constexpr OutputIt
set_intersection(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2,
OutputIt result);
template<class InputIt1, class InputIt2, class OutputIt, class Compare>
constexpr OutputIt
set_intersection(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2,
OutputIt result, Compare comp);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2,
class ForwardIt>
ForwardIt
set_intersection(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2,
ForwardIt result);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2,
class ForwardIt, class Compare>
ForwardIt
set_intersection(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2,
ForwardIt result, Compare comp);
namespace ranges {
template<class I1, class I2, class O>
using set_intersection_result = binary_transform_result<I1, I2, O>;
template<InputIterator I1, Sentinel<I1> S1, InputIterator I2, Sentinel<I2> S2,
WeaklyIncrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>
requires Mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr set_intersection_result<I1, I2, O>
set_intersection(I1 first1, S1 last1, I2 first2, S2 last2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<InputRange R1, InputRange R2, WeaklyIncrementable O,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>
requires Mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr set_intersection_result<safe_iterator_t<R1>, safe_iterator_t<R2>, O>
set_intersection(R1&& r1, R2&& r2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
}
template<class InputIt1, class InputIt2, class OutputIt>
constexpr OutputIt
set_difference(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2,
OutputIt result);
template<class InputIt1, class InputIt2, class OutputIt, class Compare>
constexpr OutputIt
set_difference(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2,
OutputIt result, Compare comp);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2,
class ForwardIt>
ForwardIt
set_difference(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2,
ForwardIt result);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2,
class ForwardIt, class Compare>
ForwardIt
set_difference(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2,
ForwardIt result, Compare comp);
namespace ranges {
template<class I, class O>
using set_difference_result = copy_result<I, O>;
template<InputIterator I1, Sentinel<I1> S1, InputIterator I2, Sentinel<I2> S2,
WeaklyIncrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>
requires Mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr set_difference_result<I1, O>
set_difference(I1 first1, S1 last1, I2 first2, S2 last2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<InputRange R1, InputRange R2, WeaklyIncrementable O,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>
requires Mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr set_difference_result<safe_iterator_t<R1>, O>
set_difference(R1&& r1, R2&& r2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
}
template<class InputIt1, class InputIt2, class OutputIt>
constexpr OutputIt
set_symmetric_difference(InputIt1 first1, InputIt1 last1,
InputIt2 first2, InputIt2 last2,
OutputIt result);
template<class InputIt1, class InputIt2, class OutputIt, class Compare>
constexpr OutputIt
set_symmetric_difference(InputIt1 first1, InputIt1 last1,
InputIt2 first2, InputIt2 last2,
OutputIt result, Compare comp);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2,
class ForwardIt>
ForwardIt
set_symmetric_difference(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2,
ForwardIt result);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2,
class ForwardIt, class Compare>
ForwardIt
set_symmetric_difference(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2,
ForwardIt result, Compare comp);
namespace ranges {
template<class I1, class I2, class O>
using set_symmetric_difference_result = binary_transform_result<I1, I2, O>;
template<InputIterator I1, Sentinel<I1> S1, InputIterator I2, Sentinel<I2> S2,
WeaklyIncrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>
requires Mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr set_symmetric_difference_result<I1, I2, O>
set_symmetric_difference(I1 first1, S1 last1, I2 first2, S2 last2, O result,
Comp comp = {}, Proj1 proj1 = {},
Proj2 proj2 = {});
template<InputRange R1, InputRange R2, WeaklyIncrementable O,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>
requires Mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr
set_symmetric_difference_result<safe_iterator_t<R1>, safe_iterator_t<R2>, O>
set_symmetric_difference(R1&& r1, R2&& r2, O result, Comp comp = {},
Proj1 proj1 = {}, Proj2 proj2 = {});
}
// heap operations:
template<class RandomAccessIt>
constexpr void push_heap(RandomAccessIt first, RandomAccessIt last);
template<class RandomAccessIt, class Compare>
constexpr void push_heap(RandomAccessIt first, RandomAccessIt last, Compare comp);
namespace ranges {
template<RandomAccessIterator I, Sentinel<I> S, class Comp = ranges::less,
class Proj = identity>
requires Sortable<I, Comp, Proj>
constexpr I
push_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<RandomAccessRange R, class Comp = ranges::less, class Proj = identity>
requires Sortable<iterator_t<R>, Comp, Proj>
constexpr safe_iterator_t<R>
push_heap(R&& r, Comp comp = {}, Proj proj = {});
}
template<class RandomAccessIt>
constexpr void pop_heap(RandomAccessIt first, RandomAccessIt last);
template<class RandomAccessIt, class Compare>
constexpr void pop_heap(RandomAccessIt first, RandomAccessIt last, Compare comp);
namespace ranges {
template<RandomAccessIterator I, Sentinel<I> S, class Comp = ranges::less,
class Proj = identity>
requires Sortable<I, Comp, Proj>
constexpr I
pop_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<RandomAccessRange R, class Comp = ranges::less, class Proj = identity>
requires Sortable<iterator_t<R>, Comp, Proj>
constexpr safe_iterator_t<R>
pop_heap(R&& r, Comp comp = {}, Proj proj = {});
}
template<class RandomAccessIt>
constexpr void make_heap(RandomAccessIt first, RandomAccessIt last);
template<class RandomAccessIt, class Compare>
constexpr void make_heap(RandomAccessIt first, RandomAccessIt last, Compare comp);
namespace ranges {
template<RandomAccessIterator I, Sentinel<I> S, class Comp = ranges::less,
class Proj = identity>
requires Sortable<I, Comp, Proj>
constexpr I
make_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<RandomAccessRange R, class Comp = ranges::less, class Proj = identity>
requires Sortable<iterator_t<R>, Comp, Proj>
constexpr safe_iterator_t<R>
make_heap(R&& r, Comp comp = {}, Proj proj = {});
}
template<class RandomAccessIt>
constexpr void sort_heap(RandomAccessIt first, RandomAccessIt last);
template<class RandomAccessIt, class Compare>
constexpr void sort_heap(RandomAccessIt first, RandomAccessIt last, Compare comp);
namespace ranges {
template<RandomAccessIterator I, Sentinel<I> S, class Comp = ranges::less,
class Proj = identity>
requires Sortable<I, Comp, Proj>
constexpr I
sort_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<RandomAccessRange R, class Comp = ranges::less, class Proj = identity>
requires Sortable<iterator_t<R>, Comp, Proj>
constexpr safe_iterator_t<R>
sort_heap(R&& r, Comp comp = {}, Proj proj = {});
}
template<class RandomAccessIt>
constexpr bool is_heap(RandomAccessIt first, RandomAccessIt last);
template<class RandomAccessIt, class Compare>
constexpr bool is_heap(RandomAccessIt first, RandomAccessIt last, Compare comp);
template<class ExecutionPolicy, class RandomAccessIt>
bool is_heap(ExecutionPolicy&& exec,
RandomAccessIt first, RandomAccessIt last);
template<class ExecutionPolicy, class RandomAccessIt, class Compare>
bool is_heap(ExecutionPolicy&& exec,
RandomAccessIt first, RandomAccessIt last, Compare comp);
namespace ranges {
template<RandomAccessIterator I, Sentinel<I> S, class Proj = identity,
IndirectStrictWeakOrder<projected<I, Proj>> Comp = ranges::less>
constexpr bool is_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<RandomAccessRange R, class Proj = identity,
IndirectStrictWeakOrder<projected<iterator_t<R>, Proj>> Comp = ranges::less>
constexpr bool is_heap(R&& r, Comp comp = {}, Proj proj = {});
}
template<class RandomAccessIt>
constexpr RandomAccessIt
is_heap_until(RandomAccessIt first, RandomAccessIt last);
template<class RandomAccessIt, class Compare>
constexpr RandomAccessIt
is_heap_until(RandomAccessIt first, RandomAccessIt last, Compare comp);
template<class ExecutionPolicy, class RandomAccessIt>
RandomAccessIt
is_heap_until(ExecutionPolicy&& exec,
RandomAccessIt first, RandomAccessIt last);
template<class ExecutionPolicy, class RandomAccessIt, class Compare>
RandomAccessIt
is_heap_until(ExecutionPolicy&& exec,
RandomAccessIt first, RandomAccessIt last, Compare comp);
namespace ranges {
template<RandomAccessIterator I, Sentinel<I> S, class Proj = identity,
IndirectStrictWeakOrder<projected<I, Proj>> Comp = ranges::less>
constexpr I is_heap_until(I first, S last, Comp comp = {}, Proj proj = {});
template<RandomAccessRange R, class Proj = identity,
IndirectStrictWeakOrder<projected<iterator_t<R>, Proj>> Comp = ranges::less>
constexpr safe_iterator_t<R>
is_heap_until(R&& r, Comp comp = {}, Proj proj = {});
}
// minimum and maximum:
template<class T> constexpr const T& min(const T& a, const T& b);
template<class T, class Compare>
constexpr const T& min(const T& a, const T& b, Compare comp);
template<class T>
constexpr T min(initializer_list<T> t);
template<class T, class Compare>
constexpr T min(initializer_list<T> t, Compare comp);
namespace ranges {
template<class T, class Proj = identity,
IndirectStrictWeakOrder<projected<const T*, Proj>> Comp = ranges::less>
constexpr const T& min(const T& a, const T& b, Comp comp = {}, Proj proj = {});
template<Copyable T, class Proj = identity,
IndirectStrictWeakOrder<projected<const T*, Proj>> Comp = ranges::less>
constexpr T min(initializer_list<T> r, Comp comp = {}, Proj proj = {});
template<InputRange R, class Proj = identity,
IndirectStrictWeakOrder<projected<iterator_t<R>, Proj>> Comp = ranges::less>
requires IndirectlyCopyableStorable<iterator_t<R>, iter_value_t<iterator_t<R>>*>
constexpr iter_value_t<iterator_t<R>>
min(R&& r, Comp comp = {}, Proj proj = {});
}
template<class T> constexpr const T& max(const T& a, const T& b);
template<class T, class Compare>
constexpr const T& max(const T& a, const T& b, Compare comp);
template<class T>
constexpr T max(initializer_list<T> t);
template<class T, class Compare>
constexpr T max(initializer_list<T> t, Compare comp);
namespace ranges {
template<class T, class Proj = identity,
IndirectStrictWeakOrder<projected<const T*, Proj>> Comp = ranges::less>
constexpr const T& max(const T& a, const T& b, Comp comp = {}, Proj proj = {});
template<Copyable T, class Proj = identity,
IndirectStrictWeakOrder<projected<const T*, Proj>> Comp = ranges::less>
constexpr T max(initializer_list<T> r, Comp comp = {}, Proj proj = {});
template<InputRange R, class Proj = identity,
IndirectStrictWeakOrder<projected<iterator_t<R>, Proj>> Comp = ranges::less>
requires IndirectlyCopyableStorable<iterator_t<R>, iter_value_t<iterator_t<R>>*>
constexpr iter_value_t<iterator_t<R>>
max(R&& r, Comp comp = {}, Proj proj = {});
}
template<class T> constexpr pair<const T&, const T&> minmax(const T& a, const T& b);
template<class T, class Compare>
constexpr pair<const T&, const T&> minmax(const T& a, const T& b, Compare comp);
template<class T>
constexpr pair<T, T> minmax(initializer_list<T> t);
template<class T, class Compare>
constexpr pair<T, T> minmax(initializer_list<T> t, Compare comp);
namespace ranges {
template<class T>
struct minmax_result {
[[no_unique_address]] T min;
[[no_unique_address]] T max;
template<class T2>
requires ConvertibleTo<const T&, T2>
operator minmax_result<T2>() const & {
return {min, max};
}
template<class T2>
requires ConvertibleTo<T, T2>
operator minmax_result<T2>() && {
return {std::move(min), std::move(max)};
}
};
template<class T, class Proj = identity,
IndirectStrictWeakOrder<projected<const T*, Proj>> Comp = ranges::less>
constexpr minmax_result<const T&>
minmax(const T& a, const T& b, Comp comp = {}, Proj proj = {});
template<Copyable T, class Proj = identity,
IndirectStrictWeakOrder<projected<const T*, Proj>> Comp = ranges::less>
constexpr minmax_result<T>
minmax(initializer_list<T> r, Comp comp = {}, Proj proj = {});
template<InputRange R, class Proj = identity,
IndirectStrictWeakOrder<projected<iterator_t<R>, Proj>> Comp = ranges::less>
requires IndirectlyCopyableStorable<iterator_t<R>, iter_value_t<iterator_t<R>>*>
constexpr minmax_result<iter_value_t<iterator_t<R>>>
minmax(R&& r, Comp comp = {}, Proj proj = {});
}
template<class ForwardIt>
constexpr ForwardIt min_element(ForwardIt first, ForwardIt last);
template<class ForwardIt, class Compare>
constexpr ForwardIt min_element(ForwardIt first, ForwardIt last,
Compare comp);
template<class ExecutionPolicy, class ForwardIt>
ForwardIt min_element(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last);
template<class ExecutionPolicy, class ForwardIt, class Compare>
ForwardIt min_element(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, Compare comp);
namespace ranges {
template<ForwardIterator I, Sentinel<I> S, class Proj = identity,
IndirectStrictWeakOrder<projected<I, Proj>> Comp = ranges::less>
constexpr I min_element(I first, S last, Comp comp = {}, Proj proj = {});
template<ForwardRange R, class Proj = identity,
IndirectStrictWeakOrder<projected<iterator_t<R>, Proj>> Comp = ranges::less>
constexpr safe_iterator_t<R>
min_element(R&& r, Comp comp = {}, Proj proj = {});
}
template<class ForwardIt>
constexpr ForwardIt max_element(ForwardIt first, ForwardIt last);
template<class ForwardIt, class Compare>
constexpr ForwardIt max_element(ForwardIt first, ForwardIt last, Compare comp);
template<class ExecutionPolicy, class ForwardIt>
ForwardIt max_element(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last);
template<class ExecutionPolicy, class ForwardIt, class Compare>
ForwardIt max_element(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, Compare comp);
namespace ranges {
template<ForwardIterator I, Sentinel<I> S, class Proj = identity,
IndirectStrictWeakOrder<projected<I, Proj>> Comp = ranges::less>
constexpr I max_element(I first, S last, Comp comp = {}, Proj proj = {});
template<ForwardRange R, class Proj = identity,
IndirectStrictWeakOrder<projected<iterator_t<R>, Proj>> Comp = ranges::less>
constexpr safe_iterator_t<R>
max_element(R&& r, Comp comp = {}, Proj proj = {});
}
template<class ForwardIt>
constexpr pair<ForwardIt, ForwardIt>
minmax_element(ForwardIt first, ForwardIt last);
template<class ForwardIt, class Compare>
constexpr pair<ForwardIt, ForwardIt>
minmax_element(ForwardIt first, ForwardIt last, Compare comp);
template<class ExecutionPolicy, class ForwardIt>
pair<ForwardIt, ForwardIt>
minmax_element(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last);
template<class ExecutionPolicy, class ForwardIt, class Compare>
pair<ForwardIt, ForwardIt>
minmax_element(ExecutionPolicy&& exec,
ForwardIt first, ForwardIt last, Compare comp);
namespace ranges {
template<class I>
using minmax_element_result = minmax_result<I>;
template<ForwardIterator I, Sentinel<I> S, class Proj = identity,
IndirectStrictWeakOrder<projected<I, Proj>> Comp = ranges::less>
constexpr minmax_element_result<I>
minmax_element(I first, S last, Comp comp = {}, Proj proj = {});
template<ForwardRange R, class Proj = identity,
IndirectStrictWeakOrder<projected<iterator_t<R>, Proj>> Comp = ranges::less>
constexpr minmax_element_result<safe_iterator_t<R>>
minmax_element(R&& r, Comp comp = {}, Proj proj = {});
}
// bounded value:
template<class T>
constexpr const T& clamp(const T& v, const T& lo, const T& hi);
template<class T, class Compare>
constexpr const T& clamp(const T& v, const T& lo, const T& hi, Compare comp);
// lexicographical comparison:
template<class InputIt1, class InputIt2>
constexpr bool
lexicographical_compare(InputIt1 first1, InputIt1 last1,
InputIt2 first2, InputIt2 last2);
template<class InputIt1, class InputIt2, class Compare>
constexpr bool
lexicographical_compare(InputIt1 first1, InputIt1 last1,
InputIt2 first2, InputIt2 last2,
Compare comp);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2>
bool
lexicographical_compare(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2);
template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2,
class Compare>
bool
lexicographical_compare(ExecutionPolicy&& exec,
ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2,
Compare comp);
namespace ranges {
template<InputIterator I1, Sentinel<I1> S1, InputIterator I2, Sentinel<I2> S2,
class Proj1 = identity, class Proj2 = identity,
IndirectStrictWeakOrder<projected<I1, Proj1>, projected<I2, Proj2>> Comp =
ranges::less>
constexpr bool
lexicographical_compare(I1 first1, S1 last1, I2 first2, S2 last2,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<InputRange R1, InputRange R2, class Proj1 = identity,
class Proj2 = identity,
IndirectStrictWeakOrder<projected<iterator_t<R1>, Proj1>,
projected<iterator_t<R2>, Proj2>> Comp = ranges::less>
constexpr bool
lexicographical_compare(R1&& r1, R2&& r2, Comp comp = {},
Proj1 proj1 = {}, Proj2 proj2 = {});
}
// three-way comparison algorithms:
template<class T, class U>
constexpr auto compare_3way(const T& a, const U& b);
template<class InputIt1, class InputIt2, class Cmp>
constexpr auto
lexicographical_compare_3way(InputIt1 b1, InputIt1 e1, InputIt2 b2, InputIt2 e2,
Cmp comp)
-> common_comparison_category_t<decltype(comp(*b1, *b2)), strong_ordering>;
template<class InputIt1, class InputIt2>
constexpr auto
lexicographical_compare_3way(InputIt1 b1, InputIt1 e1, InputIt2 b2, InputIt2 e2);
// permutations:
template<class BidirectionalIt>
constexpr bool next_permutation(BidirectionalIt first, BidirectionalIt last);
template<class BidirectionalIt, class Compare>
constexpr bool next_permutation(BidirectionalIt first, BidirectionalIt last,
Compare comp);
namespace ranges {
template<BidirectionalIterator I, Sentinel<I> S, class Comp = ranges::less,
class Proj = identity>
requires Sortable<I, Comp, Proj>
constexpr bool
next_permutation(I first, S last, Comp comp = {}, Proj proj = {});
template<BidirectionalRange R, class Comp = ranges::less,
class Proj = identity>
requires Sortable<iterator_t<R>, Comp, Proj>
constexpr bool
next_permutation(R&& r, Comp comp = {}, Proj proj = {});
}
template<class BidirectionalIt>
constexpr bool prev_permutation(BidirectionalIt first, BidirectionalIt last);
template<class BidirectionalIt, class Compare>
constexpr bool prev_permutation(BidirectionalIt first, BidirectionalIt last,
Compare comp);
namespace ranges {
template<BidirectionalIterator I, Sentinel<I> S, class Comp = ranges::less,
class Proj = identity>
requires Sortable<I, Comp, Proj>
constexpr bool
prev_permutation(I first, S last, Comp comp = {}, Proj proj = {});
template<BidirectionalRange R, class Comp = ranges::less,
class Proj = identity>
requires Sortable<iterator_t<R>, Comp, Proj>
constexpr bool
prev_permutation(R&& r, Comp comp = {}, Proj proj = {});
}
}
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/header/algorithm