std::acos(std::complex)
Defined in header <complex> | ||
|---|---|---|
template< class T > complex<T> acos( const complex<T>& z ); | (since C++11) |
Computes complex arc cosine of a complex value z. Branch cuts exist outside the interval [−1 ; +1] along the real axis.
Parameters
| z | - | complex value |
Return value
If no errors occur, complex arc cosine of z is returned, in the range [0 ; ∞) along the real axis and in the range [−iπ ; iπ] along the imaginary axis.
Error handling and special values
Errors are reported consistent with math_errhandling.
If the implementation supports IEEE floating-point arithmetic,
-
std::acos(std::conj(z)) == std::conj(std::acos(z)) - If
zis(±0,+0), the result is(π/2,-0) - If
zis(±0,NaN), the result is(π/2,NaN) - If
zis(x,+∞)(for any finite x), the result is(π/2,-∞) - If
zis(x,NaN)(for any nonzero finite x), the result is(NaN,NaN)andFE_INVALIDmay be raised. - If
zis(-∞,y)(for any positive finite y), the result is(π,-∞) - If
zis(+∞,y)(for any positive finite y), the result is(+0,-∞) - If
zis(-∞,+∞), the result is(3π/4,-∞) - If
zis(+∞,+∞), the result is(π/4,-∞) - If
zis(±∞,NaN), the result is(NaN,±∞)(the sign of the imaginary part is unspecified) - If
zis(NaN,y)(for any finite y), the result is(NaN,NaN)andFE_INVALIDmay be raised - If
zis(NaN,+∞), the result is(NaN,-∞) - If
zis(NaN,NaN), the result is(NaN,NaN)
Notes
Inverse cosine (or arc cosine) is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments (-∞,-1) and (1,∞) of the real axis. The mathematical definition of the principal value of arc cosine is acos z =
| 1 |
| 2 |
)
For any z, acos(z) = π - acos(-z).
Example
#include <iostream>
#include <cmath>
#include <complex>
int main()
{
std::cout << std::fixed;
std::complex<double> z1(-2, 0);
std::cout << "acos" << z1 << " = " << std::acos(z1) << '\n';
std::complex<double> z2(-2, -0.0);
std::cout << "acos" << z2 << " (the other side of the cut) = "
<< std::acos(z2) << '\n';
// for any z, acos(z) = pi - acos(-z)
const double pi = std::acos(-1);
std::complex<double> z3 = pi - std::acos(z2);
std::cout << "cos(pi - acos" << z2 << ") = " << std::cos(z3) << '\n';
}Output:
acos(-2.000000,0.000000) = (3.141593,-1.316958) acos(-2.000000,-0.000000) (the other side of the cut) = (3.141593,1.316958) cos(pi - acos(-2.000000,-0.000000)) = (2.000000,0.000000)
See also
|
(C++11) | computes arc sine of a complex number (arcsin(z)) (function template) |
|
(C++11) | computes arc tangent of a complex number (arctan(z)) (function template) |
| computes cosine of a complex number (cos(z)) (function template) |
|
|
(C++11)(C++11) | computes arc cosine (arccos(x)) (function) |
applies the function std::acos to each element of valarray (function template) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/numeric/complex/acos