std::modf, std::modff, std::modfl
Defined in header <cmath> | ||
|---|---|---|
| (1) | ||
float modf ( float x, float* iptr ); | ||
float modff( float x, float* iptr ); | (since C++11) | |
double modf ( double x, double* iptr ); | (2) | |
| (3) | ||
long double modf ( long double x, long double* iptr ); | ||
long double modfl( long double x, long double* iptr ); | (since C++11) |
1-3) Decomposes given floating point value
x into integral and fractional parts, each having the same type and sign as x. The integral part (in floating-point format) is stored in the object pointed to by iptr.Parameters
| x | - | floating point value |
| iptr | - | pointer to floating point value to store the integral part to |
Return value
If no errors occur, returns the fractional part of x with the same sign as x. The integral part is put into the value pointed to by iptr.
The sum of the returned value and the value stored in *iptr gives x (allowing for rounding).
Error handling
This function is not subject to any errors specified in math_errhandling.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- If
xis ±0, ±0 is returned, and ±0 is stored in*iptr. - If
xis ±∞, ±0 is returned, and ±∞ is stored in*iptr. - If
xis NaN, NaN is returned, and NaN is stored in*iptr. - The returned value is exact, the current rounding mode is ignored
Notes
This function behaves as if implemented as follows:
double modf(double x, double* iptr)
{
#pragma STDC FENV_ACCESS ON
int save_round = std::fegetround();
std::fesetround(FE_TOWARDZERO);
*iptr = std::nearbyint(x);
std::fesetround(save_round);
return std::copysign(std::isinf(x) ? 0.0 : x - (*iptr), x);
}Example
Compares different floating-point decomposition functions.
#include <iostream>
#include <cmath>
#include <limits>
int main()
{
double f = 123.45;
std::cout << "Given the number " << f << " or " << std::hexfloat
<< f << std::defaultfloat << " in hex,\n";
double f3;
double f2 = std::modf(f, &f3);
std::cout << "modf() makes " << f3 << " + " << f2 << '\n';
int i;
f2 = std::frexp(f, &i);
std::cout << "frexp() makes " << f2 << " * 2^" << i << '\n';
i = std::ilogb(f);
std::cout << "logb()/ilogb() make " << f/std::scalbn(1.0, i) << " * "
<< std::numeric_limits<double>::radix
<< "^" << std::ilogb(f) << '\n';
// special values
f2 = std::modf(-0.0, &f3);
std::cout << "modf(-0) makes " << f3 << " + " << f2 << '\n';
f2 = std::modf(-INFINITY, &f3);
std::cout << "modf(-Inf) makes " << f3 << " + " << f2 << '\n';
}Possible output:
Given the number 123.45 or 0x1.edccccccccccdp+6 in hex, modf() makes 123 + 0.45 frexp() makes 0.964453 * 2^7 logb()/ilogb() make 1.92891 * 2^6 modf(-0) makes -0 + -0 modf(-Inf) makes -INF + -0
See also
|
(C++11)(C++11)(C++11) | nearest integer not greater in magnitude than the given value (function) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/numeric/math/modf