std::lgamma, std::lgammaf, std::lgammal
Defined in header <cmath> | ||
|---|---|---|
float lgamma ( float arg ); float lgammaf( float arg ); | (1) | (since C++11) |
double lgamma ( double arg ); | (2) | (since C++11) |
long double lgamma ( long double arg ); long double lgammal( long double arg ); | (3) | (since C++11) |
double lgamma ( IntegralType arg ); | (4) | (since C++11) |
double).Parameters
| arg | - | value of a floating-point or Integral type |
Return value
If no errors occur, the value of the logarithm of the gamma function of arg, that is log
e|∫∞
0targ-1
e-t dt|, is returned.
If a pole error occurs, +HUGE_VAL, +HUGE_VALF, or +HUGE_VALL is returned.
If a range error due to overflow occurs, ±HUGE_VAL, ±HUGE_VALF, or ±HUGE_VALL is returned.
Error handling
Errors are reported as specified in math_errhandling.
If arg is zero or is an integer less than zero, a pole error may occur.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- If the argument is 1, +0 is returned
- If the argument is 2, +0 is returned
- If the argument is ±0, +∞ is returned and
FE_DIVBYZEROis raised - If the argument is a negative integer, +∞ is returned and
FE_DIVBYZEROis raised - If the argument is ±∞, +∞ is returned.
- If the argument is NaN, NaN is returned
Notes
If arg is a natural number, std::lgamma(arg) is the logarithm of the factorial of arg-1.
The POSIX version of lgamma is not thread-safe: each execution of the function stores the sign of the gamma function of arg in the static external variable signgam. Some implementations provide lgamma_r, which takes a pointer to user-provided storage for singgam as the second parameter, and is thread-safe.
There is a non-standard function named gamma in various implementations, but its definition is inconsistent. For example, glibc and 4.2BSD version of gamma executes lgamma, but 4.4BSD version of gamma executes tgamma.
Example
#include <iostream>
#include <cmath>
#include <cerrno>
#include <cstring>
#include <cfenv>
#pragma STDC FENV_ACCESS ON
const double pi = std::acos(-1);
int main()
{
std::cout << "lgamma(10) = " << std::lgamma(10)
<< ", log(9!) = " << std::log(2*3*4*5*6*7*8*9) << '\n'
<< "lgamma(0.5) = " << std::lgamma(0.5)
<< " , log(sqrt(pi)) = " << std::log(std::sqrt(pi)) << '\n';
// special values
std::cout << "lgamma(1) = " << std::lgamma(1) << '\n'
<< "lgamma(+Inf) = " << std::lgamma(INFINITY) << '\n';
// error handling
errno = 0;
std::feclearexcept(FE_ALL_EXCEPT);
std::cout << "lgamma(0) = " << std::lgamma(0) << '\n';
if (errno == ERANGE)
std::cout << " errno == ERANGE: " << std::strerror(errno) << '\n';
if (std::fetestexcept(FE_DIVBYZERO))
std::cout << " FE_DIVBYZERO raised\n";
}Output:
lgamma(10) = 12.8018, log(9!) = 12.8018
lgamma(0.5) = 0.572365 , log(sqrt(pi)) = 0.572365
lgamma(1) = 0
lgamma(+Inf) = inf
lgamma(0) = inf
errno == ERANGE: Numerical result out of range
FE_DIVBYZERO raisedSee also
|
(C++11)(C++11)(C++11) | gamma function (function) |
External links
Weisstein, Eric W. "Log Gamma Function." From MathWorld--A Wolfram Web Resource.
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/numeric/math/lgamma