std::ldexp, std::ldexpf, std::ldexpl
Defined in header <cmath> | ||
|---|---|---|
| (1) | ||
float ldexp ( float x, int exp ); | ||
float ldexpf( float x, int exp ); | (since C++11) | |
double ldexp ( double x, int exp ); | (2) | |
| (3) | ||
long double ldexp ( long double x, int exp ); | ||
long double ldexpl( long double x, int exp ); | (since C++11) | |
double ldexp ( IntegralType x, int exp ); | (4) | (since C++11) |
x by the number 2 raised to the exp power.double).Parameters
| x | - | floating point value |
| exp | - | integer value |
Return value
If no errors occur, x multiplied by 2 to the power of exp (x×2exp
) is returned.
If a range error due to overflow occurs, ±HUGE_VAL, ±HUGE_VALF, or ±HUGE_VALL is returned.
If a range error due to underflow occurs, the correct result (after rounding) is returned.
Error handling
Errors are reported as specified in math_errhandling.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- Unless a range error occurs,
FE_INEXACTis never raised (the result is exact) - Unless a range error occurs, the current rounding mode is ignored
- If
xis ±0, it is returned, unmodified - If
xis ±∞, it is returned, unmodified - If
expis 0, thenxis returned, unmodified - If
xis NaN, NaN is returned
Notes
On binary systems (where FLT_RADIX is 2), std::ldexp is equivalent to std::scalbn.
The function std::ldexp ("load exponent"), together with its dual, std::frexp, can be used to manipulate the representation of a floating-point number without direct bit manipulations.
On many implementations, std::ldexp is less efficient than multiplication or division by a power of two using arithmetic operators.
Example
#include <iostream>
#include <cmath>
#include <cerrno>
#include <cstring>
#include <cfenv>
#pragma STDC FENV_ACCESS ON
int main()
{
std::cout << "ldexp(7, -4) = " << std::ldexp(7, -4) << '\n'
<< "ldexp(1, -1074) = " << std::ldexp(1, -1074)
<< " (minimum positive subnormal double)\n"
<< "ldexp(nextafter(1,0), 1024) = "
<< std::ldexp(std::nextafter(1,0), 1024)
<< " (largest finite double)\n";
// special values
std::cout << "ldexp(-0, 10) = " << std::ldexp(-0.0, 10) << '\n'
<< "ldexp(-Inf, -1) = " << std::ldexp(-INFINITY, -1) << '\n';
// error handling
errno = 0;
std::feclearexcept(FE_ALL_EXCEPT);
std::cout << "ldexp(1, 1024) = " << std::ldexp(1, 1024) << '\n';
if (errno == ERANGE)
std::cout << " errno == ERANGE: " << std::strerror(errno) << '\n';
if (std::fetestexcept(FE_OVERFLOW))
std::cout << " FE_OVERFLOW raised\n";
}Output:
ldexp(7, -4) = 0.4375
ldexp(1, -1074) = 4.94066e-324 (minimum positive subnormal double)
ldexp(nextafter(1,0), 1024) = 1.79769e+308 (largest finite double)
ldexp(-0, 10) = -0
ldexp(-Inf, -1) = -inf
ldexp(1, 1024) = inf
errno == ERANGE: Numerical result out of range
FE_OVERFLOW raisedSee also
|
(C++11)(C++11) | decomposes a number into significand and a power of 2 (function) |
|
(C++11)(C++11)(C++11)(C++11)(C++11)(C++11) | multiplies a number by FLT_RADIX raised to a power (function) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/numeric/math/ldexp