std::stable_partition
Defined in header <algorithm> | ||
---|---|---|
template< class BidirIt, class UnaryPredicate > BidirIt stable_partition( BidirIt first, BidirIt last, UnaryPredicate p ); | (1) | |
template< class ExecutionPolicy, class BidirIt, class UnaryPredicate > BidirIt stable_partition( ExecutionPolicy&& policy, BidirIt first, BidirIt last, UnaryPredicate p ); | (2) | (since C++17) |
[first, last)
in such a way that all elements for which the predicate p
returns true
precede the elements for which predicate p
returns false
. Relative order of the elements is preserved. policy
. This overload only participates in overload resolution if std::is_execution_policy_v<std::decay_t<ExecutionPolicy>>
is true.Parameters
first, last | - | the range of elements to reorder |
policy | - | the execution policy to use. See execution policy for details. |
p | - | unary predicate which returns true if the element should be ordered before other elements. The expression |
Type requirements | ||
-BidirIt must meet the requirements of ValueSwappable and LegacyBidirectionalIterator. |
||
-The type of dereferenced BidirIt must meet the requirements of MoveAssignable and MoveConstructible. |
||
-UnaryPredicate must meet the requirements of Predicate. |
Return value
Iterator to the first element of the second group.
Complexity
Given N = last - first
.
N
applications of the predicate and O(N)
swaps if there is enough extra memory. If memory is insufficient, at most N log N
swaps.O(N log N)
swaps and O(N)
applications of the predicateExceptions
The overload with a template parameter named ExecutionPolicy
reports errors as follows:
- If execution of a function invoked as part of the algorithm throws an exception and
ExecutionPolicy
is one of the standard policies,std::terminate
is called. For any otherExecutionPolicy
, the behavior is implementation-defined. - If the algorithm fails to allocate memory,
std::bad_alloc
is thrown.
Notes
This function attempts to allocate a temporary buffer. If the allocation fails, the less efficient algorithm is chosen.
Example
#include <iostream> #include <algorithm> #include <vector> int main() { std::vector<int> v{0, 0, 3, 0, 2, 4, 5, 0, 7}; std::stable_partition(v.begin(), v.end(), [](int n){return n>0;}); for (int n : v) { std::cout << n << ' '; } std::cout << '\n'; }
Output:
3 2 4 5 7 0 0 0 0
See also
divides a range of elements into two groups (function template) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/algorithm/stable_partition