std::assoc_legendre, std::assoc_legendref, std::assoc_legendrel
double assoc_legendre( unsigned int n, unsigned int m, double x ); float assoc_legendre( unsigned int n, unsigned int m, float x ); long double assoc_legendre( unsigned int n, unsigned int m, long double x ); float assoc_legendref( unsigned int n, unsigned int m, float x ); long double assoc_legendrel( unsigned int n, unsigned int m, long double x ); | (1) | (since C++17) |
double assoc_legendre( unsigned int n, unsigned int m, IntegralType x ); | (2) | (since C++17) |
double.Parameters
| n | - | the degree of the polynomial, a value of unsigned integer type |
| m | - | the order of the polynomial, a value of unsigned integer type |
| x | - | the argument, a value of a floating-point or integral type |
Return value
If no errors occur, value of the associated Legendre polynomial \(\mathsf{P}_n^m\)Pmn of
x, that is \((1 - x^2) ^ {m/2} \: \frac{ \mathsf{d} ^ m}{ \mathsf{d}x ^ m} \, \mathsf{P}_n(x)\)(1-x2)m/2
| dm |
| dxm |
n(x), is returned (where \(\mathsf{P}_n(x)\)P
n(x) is the unassociated Legendre polynomial,
std::legendre(n, x)). Note that the Condon-Shortley phase term \((-1)^m\)(-1)m
is omitted from this definition.
Error handling
Errors may be reported as specified in math_errhandling.
- If the argument is NaN, NaN is returned and domain error is not reported
- If |x| > 1, a domain error may occur
- If
nis greater or equal to 128, the behavior is implementation-defined.
Notes
Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath and namespace std::tr1.
An implementation of this function is also available in boost.math as boost::math::legendre_p, except that the boost.math definition includes the Condon-Shortley phase term.
The first few associated Legendre polynomials are:
- assoc_legendre(0, 0, x) = 1
- assoc_legendre(1, 0, x) = x
- assoc_legendre(1, 1, x) = (1-x2
)1/2
- assoc_legendre(2, 0, x) =
(3x21 2
-1) - assoc_legendre(2, 1, x) = 3x(1-x2
)1/2
- assoc_legendre(2, 2, x) = 3(1-x2
)
Example
#include <cmath>
#include <iostream>
double P20(double x) { return 0.5*(3*x*x-1); }
double P21(double x) { return 3.0*x*std::sqrt(1-x*x); }
double P22(double x) { return 3*(1-x*x); }
int main()
{
// spot-checks
std::cout << std::assoc_legendre(2, 0, 0.5) << '=' << P20(0.5) << '\n'
<< std::assoc_legendre(2, 1, 0.5) << '=' << P21(0.5) << '\n'
<< std::assoc_legendre(2, 2, 0.5) << '=' << P22(0.5) << '\n';
}Output:
-0.125=-0.125 1.29904=1.29904 2.25=2.25
See also
|
(C++17)(C++17)(C++17) | Legendre polynomials (function) |
External links
Weisstein, Eric W. "Associated Legendre Polynomial." From MathWorld--A Wolfram Web Resource.
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/numeric/special_math/assoc_legendre