std::inner_product
Defined in header <numeric> | ||
|---|---|---|
template< class InputIt1, class InputIt2, class T >
T inner_product( InputIt1 first1, InputIt1 last1,
InputIt2 first2, T init );
| (1) | |
template<class InputIt1, class InputIt2, class T,
class BinaryOperation1, class BinaryOperation2>
T inner_product( InputIt1 first1, InputIt1 last1,
InputIt2 first2, T init,
BinaryOperation1 op1,
BinaryOperation2 op2 );
| (2) |
Computes inner product (i.e. sum of products) or performs ordered map/reduce operation on the range [first1, last1) and the range beginning at first2.
acc with the initial value init and then | modifies it with the expression | (until C++20) |
| modifies it with the expression | (since C++20) |
last1. For built-in meaning of + and *, this computes inner product of the two ranges.acc with the initial value init and then | modifies it with the expression | (until C++20) |
| modifies it with the expression | (since C++20) |
last1.|
| (until C++11) |
|
| (since C++11) |
Parameters
| first1, last1 | - | the first range of elements |
| first2 | - | the beginning of the second range of elements |
| init | - | initial value of the sum of the products |
| op1 | - | binary operation function object that will be applied. This "sum" function takes a value returned by op2 and the current value of the accumulator and produces a new value to be stored in the accumulator. The signature of the function should be equivalent to the following:
The signature does not need to have |
| op2 | - | binary operation function object that will be applied. This "product" function takes one value from each range and produces a new value. The signature of the function should be equivalent to the following:
The signature does not need to have |
| Type requirements | ||
-InputIt1, InputIt2 must meet the requirements of LegacyInputIterator. |
||
-ForwardIt1, ForwardIt2 must meet the requirements of LegacyForwardIterator. |
||
-T must meet the requirements of CopyAssignable and CopyConstructible. |
||
Return value
The final value of acc as described above.
Possible implementation
| First version |
|---|
template<class InputIt1, class InputIt2, class T>
T inner_product(InputIt1 first1, InputIt1 last1,
InputIt2 first2, T init)
{
while (first1 != last1) {
init = std::move(init) + *first1 * *first2; // std::move since C++20
++first1;
++first2;
}
return init;
} |
| Second version |
template<class InputIt1, class InputIt2,
class T,
class BinaryOperation1, class BinaryOperation2>
T inner_product(InputIt1 first1, InputIt1 last1,
InputIt2 first2, T init,
BinaryOperation1 op1
BinaryOperation2 op2)
{
while (first1 != last1) {
init = op1(std::move(init), op2(*first1, *first2)); // std::move since C++20
++first1;
++first2;
}
return init;
} |
Notes
The parallelizable version of this algorithm, std::transform_reduce, requires op1 and op2 to be commutative and associative, but std::inner_product makes no such requirement, and always performs the operations in the order given.
Example
#include <numeric>
#include <iostream>
#include <vector>
#include <functional>
int main()
{
std::vector<int> a{0, 1, 2, 3, 4};
std::vector<int> b{5, 4, 2, 3, 1};
int r1 = std::inner_product(a.begin(), a.end(), b.begin(), 0);
std::cout << "Inner product of a and b: " << r1 << '\n';
int r2 = std::inner_product(a.begin(), a.end(), b.begin(), 0,
std::plus<>(), std::equal_to<>());
std::cout << "Number of pairwise matches between a and b: " << r2 << '\n';
}Output:
Inner product of a and b: 21 Number of pairwise matches between a and b: 2
See also
|
(C++17) | applies a functor, then reduces out of order (function template) |
| sums up a range of elements (function template) |
|
| computes the partial sum of a range of elements (function template) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/algorithm/inner_product