tf.tpu.experimental.embedding.SGD
Optimization parameters for stochastic gradient descent for TPU embeddings.
tf.tpu.experimental.embedding.SGD( learning_rate: Union[float, Callable[[], float]] = 0.01, clip_weight_min: Optional[float] = None, clip_weight_max: Optional[float] = None, weight_decay_factor: Optional[float] = None, multiply_weight_decay_factor_by_learning_rate: bool = None, clipvalue: Optional[ClipValueType] = None )
Pass this to tf.tpu.experimental.embedding.TPUEmbedding
via the optimizer
argument to set the global optimizer and its parameters:
embedding = tf.tpu.experimental.embedding.TPUEmbedding( ... optimizer=tf.tpu.experimental.embedding.SGD(0.1))
This can also be used in a tf.tpu.experimental.embedding.TableConfig
as the optimizer parameter to set a table specific optimizer. This will override the optimizer and parameters for global embedding optimizer defined above:
table_one = tf.tpu.experimental.embedding.TableConfig( vocabulary_size=..., dim=..., optimizer=tf.tpu.experimental.embedding.SGD(0.2)) table_two = tf.tpu.experimental.embedding.TableConfig( vocabulary_size=..., dim=...) feature_config = ( tf.tpu.experimental.embedding.FeatureConfig( table=table_one), tf.tpu.experimental.embedding.FeatureConfig( table=table_two)) embedding = tf.tpu.experimental.embedding.TPUEmbedding( feature_config=feature_config, batch_size=... optimizer=tf.tpu.experimental.embedding.SGD(0.1))
In the above example, the first feature will be looked up in a table that has a learning rate of 0.2 while the second feature will be looked up in a table that has a learning rate of 0.1.
See 'tensorflow/core/protobuf/tpu/optimization_parameters.proto' for a complete description of these parameters and their impacts on the optimizer algorithm.
Args | |
---|---|
learning_rate | The learning rate. It should be a floating point value or a callable taking no arguments for a dynamic learning rate. |
clip_weight_min | the minimum value to clip by; None means -infinity. |
clip_weight_max | the maximum value to clip by; None means +infinity. |
weight_decay_factor | amount of weight decay to apply; None means that the weights are not decayed. Weights are decayed by multiplying the weight by this factor each step. |
multiply_weight_decay_factor_by_learning_rate | if true, weight_decay_factor is multiplied by the current learning rate. |
clipvalue | Controls clipping of the gradient. Set to either a single positive scalar value to get clipping or a tiple of scalar values (min, max) to set a separate maximum or minimum. If one of the two entries is None, then there will be no clipping that direction. Note if this is set, you may see a decrease in performance as gradient accumulation will be enabled (it is normally off for SGD as it has no affect on accuracy). See 'tensorflow/core/protobuf/tpu/optimization_parameters.proto' for more information on gradient accumulation and its impact on tpu embeddings. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/tpu/experimental/embedding/SGD