tf.keras.layers.Cropping2D
View source on GitHub |
Cropping layer for 2D input (e.g. picture).
tf.keras.layers.Cropping2D( cropping=((0, 0), (0, 0)), data_format=None, **kwargs )
It crops along spatial dimensions, i.e. height and width.
Examples:
input_shape = (2, 28, 28, 3) x = np.arange(np.prod(input_shape)).reshape(input_shape) y = tf.keras.layers.Cropping2D(cropping=((2, 2), (4, 4)))(x) print(y.shape) (2, 24, 20, 3)
Arguments | |
---|---|
cropping | Int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints.
|
data_format | A string, one of channels_last (default) or channels_first . The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width) . It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json . If you never set it, then it will be "channels_last". |
Input shape:
4D tensor with shape:
- If
data_format
is"channels_last"
:(batch_size, rows, cols, channels)
- If
data_format
is"channels_first"
:(batch_size, channels, rows, cols)
Output shape:
4D tensor with shape:
- If
data_format
is"channels_last"
:(batch_size, cropped_rows, cropped_cols, channels)
- If
data_format
is"channels_first"
:(batch_size, channels, cropped_rows, cropped_cols)
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/layers/Cropping2D