tf.test.compute_gradient
Computes the theoretical and numeric Jacobian of f
.
tf.test.compute_gradient(
f, x, delta=0.001
)
With y = f(x), computes the theoretical and numeric Jacobian dy/dx.
Args |
f | the function. |
x | the arguments for the function as a list or tuple of values convertible to a Tensor. |
delta | (optional) perturbation used to compute numeric Jacobian. |
Returns |
A pair of lists, where the first is a list of 2-d numpy arrays representing the theoretical Jacobians for each argument, and the second list is the numerical ones. Each 2-d array has "y_size" rows and "x_size" columns where "x_size" is the number of elements in the corresponding argument and "y_size" is the number of elements in f(x). |
Raises |
ValueError | If result is empty but the gradient is nonzero. |
ValueError | If x is not list, but any other type. |
Example:
@tf.function
def test_func(x):
return x*x
theoretical, numerical = tf.test.compute_gradient(test_func, [1.0])
theoretical, numerical
# ((array([[2.]], dtype=float32),), (array([[2.000004]], dtype=float32),))