tf.constant

Creates a constant tensor from a tensor-like object.

Note: All eager tf.Tensor values are immutable (in contrast to tf.Variable). There is nothing especially constant about the value returned from tf.constant. This function it is not fundamentally different from tf.convert_to_tensor. The name tf.constant comes from the value being embeded in a Const node in the tf.Graph. tf.constant is useful for asserting that the value can be embedded that way.

If the argument dtype is not specified, then the type is inferred from the type of value.

# Constant 1-D Tensor from a python list.
tf.constant([1, 2, 3, 4, 5, 6])
<tf.Tensor: shape=(6,), dtype=int32,
    numpy=array([1, 2, 3, 4, 5, 6], dtype=int32)>
# Or a numpy array
a = np.array([[1, 2, 3], [4, 5, 6]])
tf.constant(a)
<tf.Tensor: shape=(2, 3), dtype=int64, numpy=
  array([[1, 2, 3],
         [4, 5, 6]])>

If dtype is specified the resulting tensor values are cast to the requested dtype.

tf.constant([1, 2, 3, 4, 5, 6], dtype=tf.float64)
<tf.Tensor: shape=(6,), dtype=float64,
    numpy=array([1., 2., 3., 4., 5., 6.])>

If shape is set, the value is reshaped to match. Scalars are expanded to fill the shape:

tf.constant(0, shape=(2, 3))
  <tf.Tensor: shape=(2, 3), dtype=int32, numpy=
  array([[0, 0, 0],
         [0, 0, 0]], dtype=int32)>
tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
  array([[1, 2, 3],
         [4, 5, 6]], dtype=int32)>

tf.constant has no effect if an eager Tensor is passed as the value, it even transmits gradients:

v = tf.Variable([0.0])
with tf.GradientTape() as g:
    loss = tf.constant(v + v)
g.gradient(loss, v).numpy()
array([2.], dtype=float32)

But, since tf.constant embeds the value in the tf.Graph this fails for symbolic tensors:

with tf.compat.v1.Graph().as_default():
  i = tf.compat.v1.placeholder(shape=[None, None], dtype=tf.float32)
  t = tf.constant(i)
Traceback (most recent call last):

TypeError: ...

tf.constant will always create CPU (host) tensors. In order to create tensors on other devices, use tf.identity. (If the value is an eager Tensor, however, the tensor will be returned unmodified as mentioned above.)

  • tf.convert_to_tensor is similar but:
    • It has no shape argument.
    • Symbolic tensors are allowed to pass through.
with tf.compat.v1.Graph().as_default():
  i = tf.compat.v1.placeholder(shape=[None, None], dtype=tf.float32)
  t = tf.convert_to_tensor(i)
  
  • tf.fill: differs in a few ways:
    • tf.constant supports arbitrary constants, not just uniform scalar Tensors like tf.fill.
    • tf.fill creates an Op in the graph that is expanded at runtime, so it can efficiently represent large tensors.
    • Since tf.fill does not embed the value, it can produce dynamically sized outputs.
Args
value A constant value (or list) of output type dtype.
dtype The type of the elements of the resulting tensor.
shape Optional dimensions of resulting tensor.
name Optional name for the tensor.
Returns
A Constant Tensor.
Raises
TypeError if shape is incorrectly specified or unsupported.
ValueError if called on a symbolic tensor.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/constant