tf.raw_ops.Conv2DBackpropFilter
Computes the gradients of convolution with respect to the filter.
tf.raw_ops.Conv2DBackpropFilter( input, filter_sizes, out_backprop, strides, padding, use_cudnn_on_gpu=True, explicit_paddings=[], data_format='NHWC', dilations=[1, 1, 1, 1], name=None )
Args | |
---|---|
input | A Tensor . Must be one of the following types: half , bfloat16 , float32 , float64 . 4-D with shape [batch, in_height, in_width, in_channels] . |
filter_sizes | A Tensor of type int32 . An integer vector representing the tensor shape of filter , where filter is a 4-D [filter_height, filter_width, in_channels, out_channels] tensor. |
out_backprop | A Tensor . Must have the same type as input . 4-D with shape [batch, out_height, out_width, out_channels] . Gradients w.r.t. the output of the convolution. |
strides | A list of ints . The stride of the sliding window for each dimension of the input of the convolution. Must be in the same order as the dimension specified with format. |
padding | A string from: "SAME", "VALID", "EXPLICIT" . The type of padding algorithm to use. |
use_cudnn_on_gpu | An optional bool . Defaults to True . |
explicit_paddings | An optional list of ints . Defaults to [] . If padding is "EXPLICIT" , the list of explicit padding amounts. For the ith dimension, the amount of padding inserted before and after the dimension is explicit_paddings[2 * i] and explicit_paddings[2 * i + 1] , respectively. If padding is not "EXPLICIT" , explicit_paddings must be empty. |
data_format | An optional string from: "NHWC", "NCHW" . Defaults to "NHWC" . Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, in_height, in_width, in_channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width]. |
dilations | An optional list of ints . Defaults to [1, 1, 1, 1] . 1-D tensor of length 4. The dilation factor for each dimension of input . If set to k > 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of data_format , see above for details. Dilations in the batch and depth dimensions must be 1. |
name | A name for the operation (optional). |
Returns | |
---|---|
A Tensor . Has the same type as input . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/raw_ops/Conv2DBackpropFilter