tf.nn.log_poisson_loss
View source on GitHub |
Computes log Poisson loss given log_input
.
tf.nn.log_poisson_loss( targets, log_input, compute_full_loss=False, name=None )
Gives the log-likelihood loss between the prediction and the target under the assumption that the target has a Poisson distribution. Caveat: By default, this is not the exact loss, but the loss minus a constant term [log(z!)]. That has no effect for optimization, but does not play well with relative loss comparisons. To compute an approximation of the log factorial term, specify compute_full_loss=True to enable Stirling's Approximation.
For brevity, let c = log(x) = log_input
, z = targets
. The log Poisson loss is
-log(exp(-x) * (x^z) / z!) = -log(exp(-x) * (x^z)) + log(z!) ~ -log(exp(-x)) - log(x^z) [+ z * log(z) - z + 0.5 * log(2 * pi * z)] [ Note the second term is the Stirling's Approximation for log(z!). It is invariant to x and does not affect optimization, though important for correct relative loss comparisons. It is only computed when compute_full_loss == True. ] = x - z * log(x) [+ z * log(z) - z + 0.5 * log(2 * pi * z)] = exp(c) - z * c [+ z * log(z) - z + 0.5 * log(2 * pi * z)]
Args | |
---|---|
targets | A Tensor of the same type and shape as log_input . |
log_input | A Tensor of type float32 or float64 . |
compute_full_loss | whether to compute the full loss. If false, a constant term is dropped in favor of more efficient optimization. |
name | A name for the operation (optional). |
Returns | |
---|---|
A Tensor of the same shape as log_input with the componentwise logistic losses. |
Raises | |
---|---|
ValueError | If log_input and targets do not have the same shape. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/nn/log_poisson_loss