tf.mlir.experimental.convert_function
Import a ConcreteFunction and convert it to a textual MLIR module.
tf.mlir.experimental.convert_function( concrete_function, pass_pipeline='tf-standard-pipeline' )
This API is only intended for inspecting the internals of TensorFlow and the string returned is at the moment intended for debugging purposes.
A tf.function can be imported and converted from TensorFlow to TensorFlow MLIR with this API by extracting its ConcreteFunction (eagerly-executing wrapper around a tf.Graph).
For example:
@tf.function def add(a, b): return a + b
concrete_function = add.get_concrete_function( tf.TensorSpec(None, tf.dtypes.float32), tf.TensorSpec(None, tf.dtypes.float32)) tf.mlir.experimental.convert_function(concrete_function) '...module attributes {...} {...}'
Args | |
---|---|
concrete_function | An object of type ConcreteFunction. |
pass_pipeline | A textual description of an MLIR Pass Pipeline to run on the module, see MLIR documentation for the textual pass pipeline syntax. |
Returns | |
---|---|
A textual representation of the MLIR module corresponding to the ConcreteFunction. |
Raises | |
---|---|
InvalidArgumentError | if concrete_function is invalid or cannot be converted to MLIR. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/mlir/experimental/convert_function