tf.data.experimental.RandomDataset
View source on GitHub |
A Dataset
of pseudorandom values.
Inherits From: Dataset
tf.data.experimental.RandomDataset( seed=None )
Attributes | |
---|---|
element_spec | The type specification of an element of this dataset. dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3]) dataset.element_spec TensorSpec(shape=(), dtype=tf.int32, name=None) |
Methods
apply
apply( transformation_func )
Applies a transformation function to this dataset.
apply
enables chaining of custom Dataset
transformations, which are represented as functions that take one Dataset
argument and return a transformed Dataset
.
dataset = tf.data.Dataset.range(100) def dataset_fn(ds): return ds.filter(lambda x: x < 5) dataset = dataset.apply(dataset_fn) list(dataset.as_numpy_iterator()) [0, 1, 2, 3, 4]
Args | |
---|---|
transformation_func | A function that takes one Dataset argument and returns a Dataset . |
Returns | |
---|---|
Dataset | The Dataset returned by applying transformation_func to this dataset. |
as_numpy_iterator
as_numpy_iterator()
Returns an iterator which converts all elements of the dataset to numpy.
Use as_numpy_iterator
to inspect the content of your dataset. To see element shapes and types, print dataset elements directly instead of using as_numpy_iterator
.
dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3]) for element in dataset: print(element) tf.Tensor(1, shape=(), dtype=int32) tf.Tensor(2, shape=(), dtype=int32) tf.Tensor(3, shape=(), dtype=int32)
This method requires that you are running in eager mode and the dataset's element_spec contains only TensorSpec
components.
dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3]) for element in dataset.as_numpy_iterator(): print(element) 1 2 3
dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3]) print(list(dataset.as_numpy_iterator())) [1, 2, 3]
as_numpy_iterator()
will preserve the nested structure of dataset elements.
dataset = tf.data.Dataset.from_tensor_slices({'a': ([1, 2], [3, 4]), 'b': [5, 6]}) list(dataset.as_numpy_iterator()) == [{'a': (1, 3), 'b': 5}, {'a': (2, 4), 'b': 6}] True
Returns | |
---|---|
An iterable over the elements of the dataset, with their tensors converted to numpy arrays. |
Raises | |
---|---|
TypeError | if an element contains a non-Tensor value. |
RuntimeError | if eager execution is not enabled. |
batch
batch( batch_size, drop_remainder=False )
Combines consecutive elements of this dataset into batches.
dataset = tf.data.Dataset.range(8) dataset = dataset.batch(3) list(dataset.as_numpy_iterator()) [array([0, 1, 2]), array([3, 4, 5]), array([6, 7])]
dataset = tf.data.Dataset.range(8) dataset = dataset.batch(3, drop_remainder=True) list(dataset.as_numpy_iterator()) [array([0, 1, 2]), array([3, 4, 5])]
The components of the resulting element will have an additional outer dimension, which will be batch_size
(or N % batch_size
for the last element if batch_size
does not divide the number of input elements N
evenly and drop_remainder
is False
). If your program depends on the batches having the same outer dimension, you should set the drop_remainder
argument to True
to prevent the smaller batch from being produced.
Args | |
---|---|
batch_size | A tf.int64 scalar tf.Tensor , representing the number of consecutive elements of this dataset to combine in a single batch. |
drop_remainder | (Optional.) A tf.bool scalar tf.Tensor , representing whether the last batch should be dropped in the case it has fewer than batch_size elements; the default behavior is not to drop the smaller batch. |
Returns | |
---|---|
Dataset | A Dataset . |
cache
cache( filename='' )
Caches the elements in this dataset.
The first time the dataset is iterated over, its elements will be cached either in the specified file or in memory. Subsequent iterations will use the cached data.
Note: For the cache to be finalized, the input dataset must be iterated through in its entirety. Otherwise, subsequent iterations will not use cached data.
dataset = tf.data.Dataset.range(5) dataset = dataset.map(lambda x: x**2) dataset = dataset.cache() # The first time reading through the data will generate the data using # `range` and `map`. list(dataset.as_numpy_iterator()) [0, 1, 4, 9, 16] # Subsequent iterations read from the cache. list(dataset.as_numpy_iterator()) [0, 1, 4, 9, 16]
When caching to a file, the cached data will persist across runs. Even the first iteration through the data will read from the cache file. Changing the input pipeline before the call to .cache()
will have no effect until the cache file is removed or the filename is changed.
dataset = tf.data.Dataset.range(5) dataset = dataset.cache("/path/to/file") # doctest: +SKIP list(dataset.as_numpy_iterator()) # doctest: +SKIP [0, 1, 2, 3, 4] dataset = tf.data.Dataset.range(10) dataset = dataset.cache("/path/to/file") # Same file! # doctest: +SKIP list(dataset.as_numpy_iterator()) # doctest: +SKIP [0, 1, 2, 3, 4]
Note:cache
will produce exactly the same elements during each iteration through the dataset. If you wish to randomize the iteration order, make sure to callshuffle
after callingcache
.
Args | |
---|---|
filename | A tf.string scalar tf.Tensor , representing the name of a directory on the filesystem to use for caching elements in this Dataset. If a filename is not provided, the dataset will be cached in memory. |
Returns | |
---|---|
Dataset | A Dataset . |
cardinality
cardinality()
Returns the cardinality of the dataset, if known.
cardinality
may return tf.data.INFINITE_CARDINALITY
if the dataset contains an infinite number of elements or tf.data.UNKNOWN_CARDINALITY
if the analysis fails to determine the number of elements in the dataset (e.g. when the dataset source is a file).
dataset = tf.data.Dataset.range(42) print(dataset.cardinality().numpy()) 42 dataset = dataset.repeat() cardinality = dataset.cardinality() print((cardinality == tf.data.INFINITE_CARDINALITY).numpy()) True dataset = dataset.filter(lambda x: True) cardinality = dataset.cardinality() print((cardinality == tf.data.UNKNOWN_CARDINALITY).numpy()) True
Returns | |
---|---|
A scalar tf.int64 Tensor representing the cardinality of the dataset. If the cardinality is infinite or unknown, cardinality returns the named constants tf.data.INFINITE_CARDINALITY and tf.data.UNKNOWN_CARDINALITY respectively. |
concatenate
concatenate( dataset )
Creates a Dataset
by concatenating the given dataset with this dataset.
a = tf.data.Dataset.range(1, 4) # ==> [ 1, 2, 3 ] b = tf.data.Dataset.range(4, 8) # ==> [ 4, 5, 6, 7 ] ds = a.concatenate(b) list(ds.as_numpy_iterator()) [1, 2, 3, 4, 5, 6, 7] # The input dataset and dataset to be concatenated should have the same # nested structures and output types. c = tf.data.Dataset.zip((a, b)) a.concatenate(c) Traceback (most recent call last): TypeError: Two datasets to concatenate have different types <dtype: 'int64'> and (tf.int64, tf.int64) d = tf.data.Dataset.from_tensor_slices(["a", "b", "c"]) a.concatenate(d) Traceback (most recent call last): TypeError: Two datasets to concatenate have different types <dtype: 'int64'> and <dtype: 'string'>
Args | |
---|---|
dataset | Dataset to be concatenated. |
Returns | |
---|---|
Dataset | A Dataset . |
enumerate
enumerate( start=0 )
Enumerates the elements of this dataset.
It is similar to python's enumerate
.
dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3]) dataset = dataset.enumerate(start=5) for element in dataset.as_numpy_iterator(): print(element) (5, 1) (6, 2) (7, 3)
# The nested structure of the input dataset determines the structure of # elements in the resulting dataset. dataset = tf.data.Dataset.from_tensor_slices([(7, 8), (9, 10)]) dataset = dataset.enumerate() for element in dataset.as_numpy_iterator(): print(element) (0, array([7, 8], dtype=int32)) (1, array([ 9, 10], dtype=int32))
Args | |
---|---|
start | A tf.int64 scalar tf.Tensor , representing the start value for enumeration. |
Returns | |
---|---|
Dataset | A Dataset . |
filter
filter( predicate )
Filters this dataset according to predicate
.
dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3]) dataset = dataset.filter(lambda x: x < 3) list(dataset.as_numpy_iterator()) [1, 2] # `tf.math.equal(x, y)` is required for equality comparison def filter_fn(x): return tf.math.equal(x, 1) dataset = dataset.filter(filter_fn) list(dataset.as_numpy_iterator()) [1]
Args | |
---|---|
predicate | A function mapping a dataset element to a boolean. |
Returns | |
---|---|
Dataset | The Dataset containing the elements of this dataset for which predicate is True . |
flat_map
flat_map( map_func )
Maps map_func
across this dataset and flattens the result.
Use flat_map
if you want to make sure that the order of your dataset stays the same. For example, to flatten a dataset of batches into a dataset of their elements:
dataset = tf.data.Dataset.from_tensor_slices( [[1, 2, 3], [4, 5, 6], [7, 8, 9]]) dataset = dataset.flat_map(lambda x: Dataset.from_tensor_slices(x)) list(dataset.as_numpy_iterator()) [1, 2, 3, 4, 5, 6, 7, 8, 9]
tf.data.Dataset.interleave()
is a generalization of flat_map
, since flat_map
produces the same output as tf.data.Dataset.interleave(cycle_length=1)
Args | |
---|---|
map_func | A function mapping a dataset element to a dataset. |
Returns | |
---|---|
Dataset | A Dataset . |
from_generator
@staticmethod from_generator( generator, output_types=None, output_shapes=None, args=None, output_signature=None )
Creates a Dataset
whose elements are generated by generator
. (deprecated arguments)
The generator
argument must be a callable object that returns an object that supports the iter()
protocol (e.g. a generator function).
The elements generated by generator
must be compatible with either the given output_signature
argument or with the given output_types
and (optionally) output_shapes
arguments, whichiver was specified.
The recommended way to call from_generator
is to use the output_signature
argument. In this case the output will be assumed to consist of objects with the classes, shapes and types defined by tf.TypeSpec
objects from output_signature
argument:
def gen(): ragged_tensor = tf.ragged.constant([[1, 2], [3]]) yield 42, ragged_tensor dataset = tf.data.Dataset.from_generator( gen, output_signature=( tf.TensorSpec(shape=(), dtype=tf.int32), tf.RaggedTensorSpec(shape=(2, None), dtype=tf.int32))) list(dataset.take(1)) [(<tf.Tensor: shape=(), dtype=int32, numpy=42>, <tf.RaggedTensor [[1, 2], [3]]>)]
There is also a deprecated way to call from_generator
by either with output_types
argument alone or together with output_shapes
argument. In this case the output of the function will be assumed to consist of tf.Tensor
objects with with the types defined by output_types
and with the shapes which are either unknown or defined by output_shapes
.
Note: The current implementation ofDataset.from_generator()
usestf.numpy_function
and inherits the same constraints. In particular, it requires the dataset and iterator related operations to be placed on a device in the same process as the Python program that calledDataset.from_generator()
. The body ofgenerator
will not be serialized in aGraphDef
, and you should not use this method if you need to serialize your model and restore it in a different environment.
Note: Ifgenerator
depends on mutable global variables or other external state, be aware that the runtime may invokegenerator
multiple times (in order to support repeating theDataset
) and at any time between the call toDataset.from_generator()
and the production of the first element from the generator. Mutating global variables or external state can cause undefined behavior, and we recommend that you explicitly cache any external state ingenerator
before callingDataset.from_generator()
.
Args | |
---|---|
generator | A callable object that returns an object that supports the iter() protocol. If args is not specified, generator must take no arguments; otherwise it must take as many arguments as there are values in args . |
output_types | (Optional.) A nested structure of tf.DType objects corresponding to each component of an element yielded by generator . |
output_shapes | (Optional.) A nested structure of tf.TensorShape objects corresponding to each component of an element yielded by generator . |
args | (Optional.) A tuple of tf.Tensor objects that will be evaluated and passed to generator as NumPy-array arguments. |
output_signature | (Optional.) A nested structure of tf.TypeSpec objects corresponding to each component of an element yielded by generator . |
Returns | |
---|---|
Dataset | A Dataset . |
from_tensor_slices
@staticmethod from_tensor_slices( tensors )
Creates a Dataset
whose elements are slices of the given tensors.
The given tensors are sliced along their first dimension. This operation preserves the structure of the input tensors, removing the first dimension of each tensor and using it as the dataset dimension. All input tensors must have the same size in their first dimensions.
# Slicing a 1D tensor produces scalar tensor elements. dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3]) list(dataset.as_numpy_iterator()) [1, 2, 3]
# Slicing a 2D tensor produces 1D tensor elements. dataset = tf.data.Dataset.from_tensor_slices([[1, 2], [3, 4]]) list(dataset.as_numpy_iterator()) [array([1, 2], dtype=int32), array([3, 4], dtype=int32)]
# Slicing a tuple of 1D tensors produces tuple elements containing # scalar tensors. dataset = tf.data.Dataset.from_tensor_slices(([1, 2], [3, 4], [5, 6])) list(dataset.as_numpy_iterator()) [(1, 3, 5), (2, 4, 6)]
# Dictionary structure is also preserved. dataset = tf.data.Dataset.from_tensor_slices({"a": [1, 2], "b": [3, 4]}) list(dataset.as_numpy_iterator()) == [{'a': 1, 'b': 3}, {'a': 2, 'b': 4}] True
# Two tensors can be combined into one Dataset object. features = tf.constant([[1, 3], [2, 1], [3, 3]]) # ==> 3x2 tensor labels = tf.constant(['A', 'B', 'A']) # ==> 3x1 tensor dataset = Dataset.from_tensor_slices((features, labels)) # Both the features and the labels tensors can be converted # to a Dataset object separately and combined after. features_dataset = Dataset.from_tensor_slices(features) labels_dataset = Dataset.from_tensor_slices(labels) dataset = Dataset.zip((features_dataset, labels_dataset)) # A batched feature and label set can be converted to a Dataset # in similar fashion. batched_features = tf.constant([[[1, 3], [2, 3]], [[2, 1], [1, 2]], [[3, 3], [3, 2]]], shape=(3, 2, 2)) batched_labels = tf.constant([['A', 'A'], ['B', 'B'], ['A', 'B']], shape=(3, 2, 1)) dataset = Dataset.from_tensor_slices((batched_features, batched_labels)) for element in dataset.as_numpy_iterator(): print(element) (array([[1, 3], [2, 3]], dtype=int32), array([[b'A'], [b'A']], dtype=object)) (array([[2, 1], [1, 2]], dtype=int32), array([[b'B'], [b'B']], dtype=object)) (array([[3, 3], [3, 2]], dtype=int32), array([[b'A'], [b'B']], dtype=object))
Note that if tensors
contains a NumPy array, and eager execution is not enabled, the values will be embedded in the graph as one or more tf.constant
operations. For large datasets (> 1 GB), this can waste memory and run into byte limits of graph serialization. If tensors
contains one or more large NumPy arrays, consider the alternative described in this guide.
Args | |
---|---|
tensors | A dataset element, with each component having the same size in the first dimension. |
Returns | |
---|---|
Dataset | A Dataset . |
from_tensors
@staticmethod from_tensors( tensors )
Creates a Dataset
with a single element, comprising the given tensors.
from_tensors
produces a dataset containing only a single element. To slice the input tensor into multiple elements, use from_tensor_slices
instead.
dataset = tf.data.Dataset.from_tensors([1, 2, 3]) list(dataset.as_numpy_iterator()) [array([1, 2, 3], dtype=int32)] dataset = tf.data.Dataset.from_tensors(([1, 2, 3], 'A')) list(dataset.as_numpy_iterator()) [(array([1, 2, 3], dtype=int32), b'A')]
# You can use `from_tensors` to produce a dataset which repeats # the same example many times. example = tf.constant([1,2,3]) dataset = tf.data.Dataset.from_tensors(example).repeat(2) list(dataset.as_numpy_iterator()) [array([1, 2, 3], dtype=int32), array([1, 2, 3], dtype=int32)]
Note that if tensors
contains a NumPy array, and eager execution is not enabled, the values will be embedded in the graph as one or more tf.constant
operations. For large datasets (> 1 GB), this can waste memory and run into byte limits of graph serialization. If tensors
contains one or more large NumPy arrays, consider the alternative described in this guide.
Args | |
---|---|
tensors | A dataset element. |
Returns | |
---|---|
Dataset | A Dataset . |
interleave
interleave( map_func, cycle_length=None, block_length=None, num_parallel_calls=None, deterministic=None )
Maps map_func
across this dataset, and interleaves the results.
For example, you can use Dataset.interleave()
to process many input files concurrently:
# Preprocess 4 files concurrently, and interleave blocks of 16 records # from each file. filenames = ["/var/data/file1.txt", "/var/data/file2.txt", "/var/data/file3.txt", "/var/data/file4.txt"] dataset = tf.data.Dataset.from_tensor_slices(filenames) def parse_fn(filename): return tf.data.Dataset.range(10) dataset = dataset.interleave(lambda x: tf.data.TextLineDataset(x).map(parse_fn, num_parallel_calls=1), cycle_length=4, block_length=16)
The cycle_length
and block_length
arguments control the order in which elements are produced. cycle_length
controls the number of input elements that are processed concurrently. If you set cycle_length
to 1, this transformation will handle one input element at a time, and will produce identical results to tf.data.Dataset.flat_map
. In general, this transformation will apply map_func
to cycle_length
input elements, open iterators on the returned Dataset
objects, and cycle through them producing block_length
consecutive elements from each iterator, and consuming the next input element each time it reaches the end of an iterator.
For example:
dataset = Dataset.range(1, 6) # ==> [ 1, 2, 3, 4, 5 ] # NOTE: New lines indicate "block" boundaries. dataset = dataset.interleave( lambda x: Dataset.from_tensors(x).repeat(6), cycle_length=2, block_length=4) list(dataset.as_numpy_iterator()) [1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5]
Note: The order of elements yielded by this transformation is deterministic, as long asmap_func
is a pure function anddeterministic=True
. Ifmap_func
contains any stateful operations, the order in which that state is accessed is undefined.
Performance can often be improved by setting num_parallel_calls
so that interleave
will use multiple threads to fetch elements. If determinism isn't required, it can also improve performance to set deterministic=False
.
filenames = ["/var/data/file1.txt", "/var/data/file2.txt", "/var/data/file3.txt", "/var/data/file4.txt"] dataset = tf.data.Dataset.from_tensor_slices(filenames) dataset = dataset.interleave(lambda x: tf.data.TFRecordDataset(x), cycle_length=4, num_parallel_calls=tf.data.AUTOTUNE, deterministic=False)
Args | |
---|---|
map_func | A function mapping a dataset element to a dataset. |
cycle_length | (Optional.) The number of input elements that will be processed concurrently. If not set, the tf.data runtime decides what it should be based on available CPU. If num_parallel_calls is set to tf.data.AUTOTUNE , the cycle_length argument identifies the maximum degree of parallelism. |
block_length | (Optional.) The number of consecutive elements to produce from each input element before cycling to another input element. If not set, defaults to 1. |
num_parallel_calls | (Optional.) If specified, the implementation creates a threadpool, which is used to fetch inputs from cycle elements asynchronously and in parallel. The default behavior is to fetch inputs from cycle elements synchronously with no parallelism. If the value tf.data.AUTOTUNE is used, then the number of parallel calls is set dynamically based on available CPU. |
deterministic | (Optional.) A boolean controlling whether determinism should be traded for performance by allowing elements to be produced out of order. If deterministic is None , the tf.data.Options.experimental_deterministic dataset option (True by default) is used to decide whether to produce elements deterministically. |
Returns | |
---|---|
Dataset | A Dataset . |
list_files
@staticmethod list_files( file_pattern, shuffle=None, seed=None )
A dataset of all files matching one or more glob patterns.
The file_pattern
argument should be a small number of glob patterns. If your filenames have already been globbed, use Dataset.from_tensor_slices(filenames)
instead, as re-globbing every filename with list_files
may result in poor performance with remote storage systems.
Note: The default behavior of this method is to return filenames in a non-deterministic random shuffled order. Pass aseed
orshuffle=False
to get results in a deterministic order.
Example:
If we had the following files on our filesystem:
- /path/to/dir/a.txt
- /path/to/dir/b.py
- /path/to/dir/c.py
If we pass "/path/to/dir/*.py" as the directory, the dataset would produce:
- /path/to/dir/b.py
- /path/to/dir/c.py
Args | |
---|---|
file_pattern | A string, a list of strings, or a tf.Tensor of string type (scalar or vector), representing the filename glob (i.e. shell wildcard) pattern(s) that will be matched. |
shuffle | (Optional.) If True , the file names will be shuffled randomly. Defaults to True . |
seed | (Optional.) A tf.int64 scalar tf.Tensor , representing the random seed that will be used to create the distribution. See tf.random.set_seed for behavior. |
Returns | |
---|---|
Dataset | A Dataset of strings corresponding to file names. |
map
map( map_func, num_parallel_calls=None, deterministic=None )
Maps map_func
across the elements of this dataset.
This transformation applies map_func
to each element of this dataset, and returns a new dataset containing the transformed elements, in the same order as they appeared in the input. map_func
can be used to change both the values and the structure of a dataset's elements. For example, adding 1 to each element, or projecting a subset of element components.
dataset = Dataset.range(1, 6) # ==> [ 1, 2, 3, 4, 5 ] dataset = dataset.map(lambda x: x + 1) list(dataset.as_numpy_iterator()) [2, 3, 4, 5, 6]
The input signature of map_func
is determined by the structure of each element in this dataset.
dataset = Dataset.range(5) # `map_func` takes a single argument of type `tf.Tensor` with the same # shape and dtype. result = dataset.map(lambda x: x + 1)
# Each element is a tuple containing two `tf.Tensor` objects. elements = [(1, "foo"), (2, "bar"), (3, "baz")] dataset = tf.data.Dataset.from_generator( lambda: elements, (tf.int32, tf.string)) # `map_func` takes two arguments of type `tf.Tensor`. This function # projects out just the first component. result = dataset.map(lambda x_int, y_str: x_int) list(result.as_numpy_iterator()) [1, 2, 3]
# Each element is a dictionary mapping strings to `tf.Tensor` objects. elements = ([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}, {"a": 3, "b": "baz"}]) dataset = tf.data.Dataset.from_generator( lambda: elements, {"a": tf.int32, "b": tf.string}) # `map_func` takes a single argument of type `dict` with the same keys # as the elements. result = dataset.map(lambda d: str(d["a"]) + d["b"])
The value or values returned by map_func
determine the structure of each element in the returned dataset.
dataset = tf.data.Dataset.range(3) # `map_func` returns two `tf.Tensor` objects. def g(x): return tf.constant(37.0), tf.constant(["Foo", "Bar", "Baz"]) result = dataset.map(g) result.element_spec (TensorSpec(shape=(), dtype=tf.float32, name=None), TensorSpec(shape=(3,), dtype=tf.string, name=None)) # Python primitives, lists, and NumPy arrays are implicitly converted to # `tf.Tensor`. def h(x): return 37.0, ["Foo", "Bar"], np.array([1.0, 2.0], dtype=np.float64) result = dataset.map(h) result.element_spec (TensorSpec(shape=(), dtype=tf.float32, name=None), TensorSpec(shape=(2,), dtype=tf.string, name=None), TensorSpec(shape=(2,), dtype=tf.float64, name=None)) # `map_func` can return nested structures. def i(x): return (37.0, [42, 16]), "foo" result = dataset.map(i) result.element_spec ((TensorSpec(shape=(), dtype=tf.float32, name=None), TensorSpec(shape=(2,), dtype=tf.int32, name=None)), TensorSpec(shape=(), dtype=tf.string, name=None))
map_func
can accept as arguments and return any type of dataset element.
Note that irrespective of the context in which map_func
is defined (eager vs. graph), tf.data traces the function and executes it as a graph. To use Python code inside of the function you have a few options:
1) Rely on AutoGraph to convert Python code into an equivalent graph computation. The downside of this approach is that AutoGraph can convert some but not all Python code.
2) Use tf.py_function
, which allows you to write arbitrary Python code but will generally result in worse performance than 1). For example:
d = tf.data.Dataset.from_tensor_slices(['hello', 'world']) # transform a string tensor to upper case string using a Python function def upper_case_fn(t: tf.Tensor): return t.numpy().decode('utf-8').upper() d = d.map(lambda x: tf.py_function(func=upper_case_fn, inp=[x], Tout=tf.string)) list(d.as_numpy_iterator()) [b'HELLO', b'WORLD']
3) Use tf.numpy_function
, which also allows you to write arbitrary Python code. Note that tf.py_function
accepts tf.Tensor
whereas tf.numpy_function
accepts numpy arrays and returns only numpy arrays. For example:
d = tf.data.Dataset.from_tensor_slices(['hello', 'world']) def upper_case_fn(t: np.ndarray): return t.decode('utf-8').upper() d = d.map(lambda x: tf.numpy_function(func=upper_case_fn, inp=[x], Tout=tf.string)) list(d.as_numpy_iterator()) [b'HELLO', b'WORLD']
Note that the use of tf.numpy_function
and tf.py_function
in general precludes the possibility of executing user-defined transformations in parallel (because of Python GIL).
Performance can often be improved by setting num_parallel_calls
so that map
will use multiple threads to process elements. If deterministic order isn't required, it can also improve performance to set deterministic=False
.
dataset = Dataset.range(1, 6) # ==> [ 1, 2, 3, 4, 5 ] dataset = dataset.map(lambda x: x + 1, num_parallel_calls=tf.data.AUTOTUNE, deterministic=False)
Args | |
---|---|
map_func | A function mapping a dataset element to another dataset element. |
num_parallel_calls | (Optional.) A tf.int32 scalar tf.Tensor , representing the number elements to process asynchronously in parallel. If not specified, elements will be processed sequentially. If the value tf.data.AUTOTUNE is used, then the number of parallel calls is set dynamically based on available CPU. |
deterministic | (Optional.) A boolean controlling whether determinism should be traded for performance by allowing elements to be produced out of order. If deterministic is None , the tf.data.Options.experimental_deterministic dataset option (True by default) is used to decide whether to produce elements deterministically. |
Returns | |
---|---|
Dataset | A Dataset . |
options
options()
Returns the options for this dataset and its inputs.
Returns | |
---|---|
A tf.data.Options object representing the dataset options. |
padded_batch
padded_batch( batch_size, padded_shapes=None, padding_values=None, drop_remainder=False )
Combines consecutive elements of this dataset into padded batches.
This transformation combines multiple consecutive elements of the input dataset into a single element.
Like tf.data.Dataset.batch
, the components of the resulting element will have an additional outer dimension, which will be batch_size
(or N % batch_size
for the last element if batch_size
does not divide the number of input elements N
evenly and drop_remainder
is False
). If your program depends on the batches having the same outer dimension, you should set the drop_remainder
argument to True
to prevent the smaller batch from being produced.
Unlike tf.data.Dataset.batch
, the input elements to be batched may have different shapes, and this transformation will pad each component to the respective shape in padded_shapes
. The padded_shapes
argument determines the resulting shape for each dimension of each component in an output element:
- If the dimension is a constant, the component will be padded out to that length in that dimension.
- If the dimension is unknown, the component will be padded out to the maximum length of all elements in that dimension.
A = (tf.data.Dataset .range(1, 5, output_type=tf.int32) .map(lambda x: tf.fill([x], x))) # Pad to the smallest per-batch size that fits all elements. B = A.padded_batch(2) for element in B.as_numpy_iterator(): print(element) [[1 0] [2 2]] [[3 3 3 0] [4 4 4 4]] # Pad to a fixed size. C = A.padded_batch(2, padded_shapes=5) for element in C.as_numpy_iterator(): print(element) [[1 0 0 0 0] [2 2 0 0 0]] [[3 3 3 0 0] [4 4 4 4 0]] # Pad with a custom value. D = A.padded_batch(2, padded_shapes=5, padding_values=-1) for element in D.as_numpy_iterator(): print(element) [[ 1 -1 -1 -1 -1] [ 2 2 -1 -1 -1]] [[ 3 3 3 -1 -1] [ 4 4 4 4 -1]] # Components of nested elements can be padded independently. elements = [([1, 2, 3], [10]), ([4, 5], [11, 12])] dataset = tf.data.Dataset.from_generator( lambda: iter(elements), (tf.int32, tf.int32)) # Pad the first component of the tuple to length 4, and the second # component to the smallest size that fits. dataset = dataset.padded_batch(2, padded_shapes=([4], [None]), padding_values=(-1, 100)) list(dataset.as_numpy_iterator()) [(array([[ 1, 2, 3, -1], [ 4, 5, -1, -1]], dtype=int32), array([[ 10, 100], [ 11, 12]], dtype=int32))] # Pad with a single value and multiple components. E = tf.data.Dataset.zip((A, A)).padded_batch(2, padding_values=-1) for element in E.as_numpy_iterator(): print(element) (array([[ 1, -1], [ 2, 2]], dtype=int32), array([[ 1, -1], [ 2, 2]], dtype=int32)) (array([[ 3, 3, 3, -1], [ 4, 4, 4, 4]], dtype=int32), array([[ 3, 3, 3, -1], [ 4, 4, 4, 4]], dtype=int32))
See also tf.data.experimental.dense_to_sparse_batch
, which combines elements that may have different shapes into a tf.sparse.SparseTensor
.
Args | |
---|---|
batch_size | A tf.int64 scalar tf.Tensor , representing the number of consecutive elements of this dataset to combine in a single batch. |
padded_shapes | (Optional.) A nested structure of tf.TensorShape or tf.int64 vector tensor-like objects representing the shape to which the respective component of each input element should be padded prior to batching. Any unknown dimensions will be padded to the maximum size of that dimension in each batch. If unset, all dimensions of all components are padded to the maximum size in the batch. padded_shapes must be set if any component has an unknown rank. |
padding_values | (Optional.) A nested structure of scalar-shaped tf.Tensor , representing the padding values to use for the respective components. None represents that the nested structure should be padded with default values. Defaults are 0 for numeric types and the empty string for string types. The padding_values should have the same structure as the input dataset. If padding_values is a single element and the input dataset has multiple components, then the same padding_values will be used to pad every component of the dataset. If padding_values is a scalar, then its value will be broadcasted to match the shape of each component. |
drop_remainder | (Optional.) A tf.bool scalar tf.Tensor , representing whether the last batch should be dropped in the case it has fewer than batch_size elements; the default behavior is not to drop the smaller batch. |
Returns | |
---|---|
Dataset | A Dataset . |
Raises | |
---|---|
ValueError | If a component has an unknown rank, and the padded_shapes argument is not set. |
prefetch
prefetch( buffer_size )
Creates a Dataset
that prefetches elements from this dataset.
Most dataset input pipelines should end with a call to prefetch
. This allows later elements to be prepared while the current element is being processed. This often improves latency and throughput, at the cost of using additional memory to store prefetched elements.
Note: Like otherDataset
methods, prefetch operates on the elements of the input dataset. It has no concept of examples vs. batches.examples.prefetch(2)
will prefetch two elements (2 examples), whileexamples.batch(20).prefetch(2)
will prefetch 2 elements (2 batches, of 20 examples each).
dataset = tf.data.Dataset.range(3) dataset = dataset.prefetch(2) list(dataset.as_numpy_iterator()) [0, 1, 2]
Args | |
---|---|
buffer_size | A tf.int64 scalar tf.Tensor , representing the maximum number of elements that will be buffered when prefetching. |
Returns | |
---|---|
Dataset | A Dataset . |
range
@staticmethod range( *args, **kwargs )
Creates a Dataset
of a step-separated range of values.
list(Dataset.range(5).as_numpy_iterator()) [0, 1, 2, 3, 4] list(Dataset.range(2, 5).as_numpy_iterator()) [2, 3, 4] list(Dataset.range(1, 5, 2).as_numpy_iterator()) [1, 3] list(Dataset.range(1, 5, -2).as_numpy_iterator()) [] list(Dataset.range(5, 1).as_numpy_iterator()) [] list(Dataset.range(5, 1, -2).as_numpy_iterator()) [5, 3] list(Dataset.range(2, 5, output_type=tf.int32).as_numpy_iterator()) [2, 3, 4] list(Dataset.range(1, 5, 2, output_type=tf.float32).as_numpy_iterator()) [1.0, 3.0]
Args | |
---|---|
*args | follows the same semantics as python's xrange. len(args) == 1 -> start = 0, stop = args[0], step = 1. len(args) == 2 -> start = args[0], stop = args[1], step = 1. len(args) == 3 -> start = args[0], stop = args[1], step = args[2]. |
**kwargs |
|
Returns | |
---|---|
Dataset | A RangeDataset . |
Raises | |
---|---|
ValueError | if len(args) == 0. |
reduce
reduce( initial_state, reduce_func )
Reduces the input dataset to a single element.
The transformation calls reduce_func
successively on every element of the input dataset until the dataset is exhausted, aggregating information in its internal state. The initial_state
argument is used for the initial state and the final state is returned as the result.
tf.data.Dataset.range(5).reduce(np.int64(0), lambda x, _: x + 1).numpy() 5 tf.data.Dataset.range(5).reduce(np.int64(0), lambda x, y: x + y).numpy() 10
Args | |
---|---|
initial_state | An element representing the initial state of the transformation. |
reduce_func | A function that maps (old_state, input_element) to new_state . It must take two arguments and return a new element The structure of new_state must match the structure of initial_state . |
Returns | |
---|---|
A dataset element corresponding to the final state of the transformation. |
repeat
repeat( count=None )
Repeats this dataset so each original value is seen count
times.
dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3]) dataset = dataset.repeat(3) list(dataset.as_numpy_iterator()) [1, 2, 3, 1, 2, 3, 1, 2, 3]
Note: If this dataset is a function of global state (e.g. a random number generator), then different repetitions may produce different elements.
Args | |
---|---|
count | (Optional.) A tf.int64 scalar tf.Tensor , representing the number of times the dataset should be repeated. The default behavior (if count is None or -1 ) is for the dataset be repeated indefinitely. |
Returns | |
---|---|
Dataset | A Dataset . |
shard
shard( num_shards, index )
Creates a Dataset
that includes only 1/num_shards
of this dataset.
shard
is deterministic. The Dataset produced by A.shard(n, i)
will contain all elements of A whose index mod n = i.
A = tf.data.Dataset.range(10) B = A.shard(num_shards=3, index=0) list(B.as_numpy_iterator()) [0, 3, 6, 9] C = A.shard(num_shards=3, index=1) list(C.as_numpy_iterator()) [1, 4, 7] D = A.shard(num_shards=3, index=2) list(D.as_numpy_iterator()) [2, 5, 8]
This dataset operator is very useful when running distributed training, as it allows each worker to read a unique subset.
When reading a single input file, you can shard elements as follows:
d = tf.data.TFRecordDataset(input_file) d = d.shard(num_workers, worker_index) d = d.repeat(num_epochs) d = d.shuffle(shuffle_buffer_size) d = d.map(parser_fn, num_parallel_calls=num_map_threads)
Important caveats:
- Be sure to shard before you use any randomizing operator (such as shuffle).
- Generally it is best if the shard operator is used early in the dataset pipeline. For example, when reading from a set of TFRecord files, shard before converting the dataset to input samples. This avoids reading every file on every worker. The following is an example of an efficient sharding strategy within a complete pipeline:
d = Dataset.list_files(pattern) d = d.shard(num_workers, worker_index) d = d.repeat(num_epochs) d = d.shuffle(shuffle_buffer_size) d = d.interleave(tf.data.TFRecordDataset, cycle_length=num_readers, block_length=1) d = d.map(parser_fn, num_parallel_calls=num_map_threads)
Args | |
---|---|
num_shards | A tf.int64 scalar tf.Tensor , representing the number of shards operating in parallel. |
index | A tf.int64 scalar tf.Tensor , representing the worker index. |
Returns | |
---|---|
Dataset | A Dataset . |
Raises | |
---|---|
InvalidArgumentError | if num_shards or index are illegal values. Note: error checking is done on a best-effort basis, and errors aren't guaranteed to be caught upon dataset creation. (e.g. providing in a placeholder tensor bypasses the early checking, and will instead result in an error during a session.run call.) |
shuffle
shuffle( buffer_size, seed=None, reshuffle_each_iteration=None )
Randomly shuffles the elements of this dataset.
This dataset fills a buffer with buffer_size
elements, then randomly samples elements from this buffer, replacing the selected elements with new elements. For perfect shuffling, a buffer size greater than or equal to the full size of the dataset is required.
For instance, if your dataset contains 10,000 elements but buffer_size
is set to 1,000, then shuffle
will initially select a random element from only the first 1,000 elements in the buffer. Once an element is selected, its space in the buffer is replaced by the next (i.e. 1,001-st) element, maintaining the 1,000 element buffer.
reshuffle_each_iteration
controls whether the shuffle order should be different for each epoch. In TF 1.X, the idiomatic way to create epochs was through the repeat
transformation:
dataset = tf.data.Dataset.range(3) dataset = dataset.shuffle(3, reshuffle_each_iteration=True) dataset = dataset.repeat(2) # doctest: +SKIP [1, 0, 2, 1, 2, 0]
dataset = tf.data.Dataset.range(3) dataset = dataset.shuffle(3, reshuffle_each_iteration=False) dataset = dataset.repeat(2) # doctest: +SKIP [1, 0, 2, 1, 0, 2]
In TF 2.0, tf.data.Dataset
objects are Python iterables which makes it possible to also create epochs through Python iteration:
dataset = tf.data.Dataset.range(3) dataset = dataset.shuffle(3, reshuffle_each_iteration=True) list(dataset.as_numpy_iterator()) # doctest: +SKIP [1, 0, 2] list(dataset.as_numpy_iterator()) # doctest: +SKIP [1, 2, 0]
dataset = tf.data.Dataset.range(3) dataset = dataset.shuffle(3, reshuffle_each_iteration=False) list(dataset.as_numpy_iterator()) # doctest: +SKIP [1, 0, 2] list(dataset.as_numpy_iterator()) # doctest: +SKIP [1, 0, 2]
Args | |
---|---|
buffer_size | A tf.int64 scalar tf.Tensor , representing the number of elements from this dataset from which the new dataset will sample. |
seed | (Optional.) A tf.int64 scalar tf.Tensor , representing the random seed that will be used to create the distribution. See tf.random.set_seed for behavior. |
reshuffle_each_iteration | (Optional.) A boolean, which if true indicates that the dataset should be pseudorandomly reshuffled each time it is iterated over. (Defaults to True .) |
Returns | |
---|---|
Dataset | A Dataset . |
skip
skip( count )
Creates a Dataset
that skips count
elements from this dataset.
dataset = tf.data.Dataset.range(10) dataset = dataset.skip(7) list(dataset.as_numpy_iterator()) [7, 8, 9]
Args | |
---|---|
count | A tf.int64 scalar tf.Tensor , representing the number of elements of this dataset that should be skipped to form the new dataset. If count is greater than the size of this dataset, the new dataset will contain no elements. If count is -1, skips the entire dataset. |
Returns | |
---|---|
Dataset | A Dataset . |
take
take( count )
Creates a Dataset
with at most count
elements from this dataset.
dataset = tf.data.Dataset.range(10) dataset = dataset.take(3) list(dataset.as_numpy_iterator()) [0, 1, 2]
Args | |
---|---|
count | A tf.int64 scalar tf.Tensor , representing the number of elements of this dataset that should be taken to form the new dataset. If count is -1, or if count is greater than the size of this dataset, the new dataset will contain all elements of this dataset. |
Returns | |
---|---|
Dataset | A Dataset . |
unbatch
unbatch()
Splits elements of a dataset into multiple elements.
For example, if elements of the dataset are shaped [B, a0, a1, ...]
, where B
may vary for each input element, then for each element in the dataset, the unbatched dataset will contain B
consecutive elements of shape [a0, a1, ...]
.
elements = [ [1, 2, 3], [1, 2], [1, 2, 3, 4] ] dataset = tf.data.Dataset.from_generator(lambda: elements, tf.int64) dataset = dataset.unbatch() list(dataset.as_numpy_iterator()) [1, 2, 3, 1, 2, 1, 2, 3, 4]
Note:unbatch
requires a data copy to slice up the batched tensor into smaller, unbatched tensors. When optimizing performance, try to avoid unnecessary usage ofunbatch
.
Returns | |
---|---|
A Dataset . |
window
window( size, shift=None, stride=1, drop_remainder=False )
Combines (nests of) input elements into a dataset of (nests of) windows.
A "window" is a finite dataset of flat elements of size size
(or possibly fewer if there are not enough input elements to fill the window and drop_remainder
evaluates to False
).
The shift
argument determines the number of input elements by which the window moves on each iteration. If windows and elements are both numbered starting at 0, the first element in window k
will be element k * shift
of the input dataset. In particular, the first element of the first window will always be the first element of the input dataset.
The stride
argument determines the stride of the input elements, and the shift
argument determines the shift of the window.
For example:
dataset = tf.data.Dataset.range(7).window(2) for window in dataset: print(list(window.as_numpy_iterator())) [0, 1] [2, 3] [4, 5] [6] dataset = tf.data.Dataset.range(7).window(3, 2, 1, True) for window in dataset: print(list(window.as_numpy_iterator())) [0, 1, 2] [2, 3, 4] [4, 5, 6] dataset = tf.data.Dataset.range(7).window(3, 1, 2, True) for window in dataset: print(list(window.as_numpy_iterator())) [0, 2, 4] [1, 3, 5] [2, 4, 6]
Note that when the window
transformation is applied to a dataset of nested elements, it produces a dataset of nested windows.
nested = ([1, 2, 3, 4], [5, 6, 7, 8]) dataset = tf.data.Dataset.from_tensor_slices(nested).window(2) for window in dataset: def to_numpy(ds): return list(ds.as_numpy_iterator()) print(tuple(to_numpy(component) for component in window)) ([1, 2], [5, 6]) ([3, 4], [7, 8])
dataset = tf.data.Dataset.from_tensor_slices({'a': [1, 2, 3, 4]}) dataset = dataset.window(2) for window in dataset: def to_numpy(ds): return list(ds.as_numpy_iterator()) print({'a': to_numpy(window['a'])}) {'a': [1, 2]} {'a': [3, 4]}
Args | |
---|---|
size | A tf.int64 scalar tf.Tensor , representing the number of elements of the input dataset to combine into a window. Must be positive. |
shift | (Optional.) A tf.int64 scalar tf.Tensor , representing the number of input elements by which the window moves in each iteration. Defaults to size . Must be positive. |
stride | (Optional.) A tf.int64 scalar tf.Tensor , representing the stride of the input elements in the sliding window. Must be positive. The default value of 1 means "retain every input element". |
drop_remainder | (Optional.) A tf.bool scalar tf.Tensor , representing whether the last windows should be dropped if their size is smaller than size . |
Returns | |
---|---|
Dataset | A Dataset of (nests of) windows -- a finite datasets of flat elements created from the (nests of) input elements. |
with_options
with_options( options )
Returns a new tf.data.Dataset
with the given options set.
The options are "global" in the sense they apply to the entire dataset. If options are set multiple times, they are merged as long as different options do not use different non-default values.
ds = tf.data.Dataset.range(5) ds = ds.interleave(lambda x: tf.data.Dataset.range(5), cycle_length=3, num_parallel_calls=3) options = tf.data.Options() # This will make the interleave order non-deterministic. options.experimental_deterministic = False ds = ds.with_options(options)
Args | |
---|---|
options | A tf.data.Options that identifies the options the use. |
Returns | |
---|---|
Dataset | A Dataset with the given options. |
Raises | |
---|---|
ValueError | when an option is set more than once to a non-default value |
zip
@staticmethod zip( datasets )
Creates a Dataset
by zipping together the given datasets.
This method has similar semantics to the built-in zip()
function in Python, with the main difference being that the datasets
argument can be an arbitrary nested structure of Dataset
objects.
# The nested structure of the `datasets` argument determines the # structure of elements in the resulting dataset. a = tf.data.Dataset.range(1, 4) # ==> [ 1, 2, 3 ] b = tf.data.Dataset.range(4, 7) # ==> [ 4, 5, 6 ] ds = tf.data.Dataset.zip((a, b)) list(ds.as_numpy_iterator()) [(1, 4), (2, 5), (3, 6)] ds = tf.data.Dataset.zip((b, a)) list(ds.as_numpy_iterator()) [(4, 1), (5, 2), (6, 3)] # The `datasets` argument may contain an arbitrary number of datasets. c = tf.data.Dataset.range(7, 13).batch(2) # ==> [ [7, 8], # [9, 10], # [11, 12] ] ds = tf.data.Dataset.zip((a, b, c)) for element in ds.as_numpy_iterator(): print(element) (1, 4, array([7, 8])) (2, 5, array([ 9, 10])) (3, 6, array([11, 12])) # The number of elements in the resulting dataset is the same as # the size of the smallest dataset in `datasets`. d = tf.data.Dataset.range(13, 15) # ==> [ 13, 14 ] ds = tf.data.Dataset.zip((a, d)) list(ds.as_numpy_iterator()) [(1, 13), (2, 14)]
Args | |
---|---|
datasets | A nested structure of datasets. |
Returns | |
---|---|
Dataset | A Dataset . |
__bool__
__bool__()
__iter__
__iter__()
Creates an iterator for elements of this dataset.
The returned iterator implements the Python Iterator protocol.
Returns | |
---|---|
An tf.data.Iterator for the elements of this dataset. |
Raises | |
---|---|
RuntimeError | If not inside of tf.function and not executing eagerly. |
__len__
__len__()
Returns the length of the dataset if it is known and finite.
This method requires that you are running in eager mode, and that the length of the dataset is known and non-infinite. When the length may be unknown or infinite, or if you are running in graph mode, use tf.data.Dataset.cardinality
instead.
Returns | |
---|---|
An integer representing the length of the dataset. |
Raises | |
---|---|
RuntimeError | If the dataset length is unknown or infinite, or if eager execution is not enabled. |
__nonzero__
__nonzero__()
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/data/experimental/RandomDataset