tf.data.experimental.service.WorkerServer
An in-process tf.data service worker server.
tf.data.experimental.service.WorkerServer( config, start=True )
A tf.data.experimental.service.WorkerServer
performs tf.data.Dataset
processing for user-defined datasets, and provides the resulting elements over RPC. A worker is associated with a single tf.data.experimental.service.DispatchServer
.
dispatcher = tf.data.experimental.service.DispatchServer() dispatcher_address = dispatcher.target.split("://")[1] worker = tf.data.experimental.service.WorkerServer( tf.data.experimental.service.WorkerConfig( dispatcher_address=dispatcher_address)) dataset = tf.data.Dataset.range(10) dataset = dataset.apply(tf.data.experimental.service.distribute( processing_mode="parallel_epochs", service=dispatcher.target)) print(list(dataset.as_numpy_iterator())) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
When starting a dedicated tf.data worker process, use join() to block indefinitely after starting up the server.
worker = tf.data.experimental.service.WorkerServer( port=5051, dispatcher_address="grpc://localhost:5050") worker.join()
Args | |
---|---|
config | A tf.data.experimental.service.WorkerConfig configration. |
start | (Optional.) Boolean, indicating whether to start the server after creating it. Defaults to True. |
Methods
join
join()
Blocks until the server has shut down.
This is useful when starting a dedicated worker process.
worker_server = tf.data.experimental.service.WorkerServer( port=5051, dispatcher_address="grpc://localhost:5050") worker_server.join()
This method currently blocks forever.
Raises | |
---|---|
tf.errors.OpError | Or one of its subclasses if an error occurs while joining the server. |
start
start()
Starts this server.
Raises | |
---|---|
tf.errors.OpError | Or one of its subclasses if an error occurs while starting the server. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/data/experimental/service/WorkerServer