tf.linalg.lu_matrix_inverse
Computes the inverse given the LU decomposition(s) of one or more matrices.
tf.linalg.lu_matrix_inverse( lower_upper, perm, validate_args=False, name=None )
This op is conceptually identical to,
inv_X = tf.lu_matrix_inverse(*tf.linalg.lu(X)) tf.assert_near(tf.matrix_inverse(X), inv_X) # ==> True
Note: this function does not verify the implied matrix is actually invertible nor is this condition checked even when validate_args=True
.
Args | |
---|---|
lower_upper | lu as returned by tf.linalg.lu , i.e., if matmul(P, matmul(L, U)) = X then lower_upper = L + U - eye . |
perm | p as returned by tf.linag.lu , i.e., if matmul(P, matmul(L, U)) = X then perm = argmax(P) . |
validate_args | Python bool indicating whether arguments should be checked for correctness. Note: this function does not verify the implied matrix is actually invertible, even when validate_args=True . Default value: False (i.e., don't validate arguments). |
name | Python str name given to ops managed by this object. Default value: None (i.e., 'lu_matrix_inverse'). |
Returns | |
---|---|
inv_x | The matrix_inv, i.e., tf.matrix_inverse(tf.linalg.lu_reconstruct(lu, perm)) . |
Examples
import numpy as np import tensorflow as tf import tensorflow_probability as tfp x = [[[3., 4], [1, 2]], [[7., 8], [3, 4]]] inv_x = tf.linalg.lu_matrix_inverse(*tf.linalg.lu(x)) tf.assert_near(tf.matrix_inverse(x), inv_x) # ==> True
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/linalg/lu_matrix_inverse