tf.linalg.banded_triangular_solve
Solve triangular systems of equations with a banded solver.
tf.linalg.banded_triangular_solve( bands, rhs, lower=True, adjoint=False, name=None )
bands
is a tensor of shape [..., K, M]
, where K
represents the number of bands stored. This corresponds to a batch of M
by M
matrices, whose K
subdiagonals (when lower
is True
) are stored.
This operator broadcasts the batch dimensions of bands
and the batch dimensions of rhs
.
Examples:
Storing 2 bands of a 3x3 matrix. Note that first element in the second row is ignored due to the 'LEFT_RIGHT' padding.
x = [[2., 3., 4.], [1., 2., 3.]] x2 = [[2., 3., 4.], [10000., 2., 3.]] y = tf.zeros([3, 3]) z = tf.linalg.set_diag(y, x, align='LEFT_RIGHT', k=(-1, 0)) z <tf.Tensor: shape=(3, 3), dtype=float32, numpy= array([[2., 0., 0.], [2., 3., 0.], [0., 3., 4.]], dtype=float32)> soln = tf.linalg.banded_triangular_solve(x, tf.ones([3, 1])) soln <tf.Tensor: shape=(3, 1), dtype=float32, numpy= array([[0.5 ], [0. ], [0.25]], dtype=float32)> are_equal = soln == tf.linalg.banded_triangular_solve(x2, tf.ones([3, 1])) tf.reduce_all(are_equal).numpy() True are_equal = soln == tf.linalg.triangular_solve(z, tf.ones([3, 1])) tf.reduce_all(are_equal).numpy() True
Storing 2 superdiagonals of a 4x4 matrix. Because of the 'LEFT_RIGHT' padding the last element of the first row is ignored.
x = [[2., 3., 4., 5.], [-1., -2., -3., -4.]] y = tf.zeros([4, 4]) z = tf.linalg.set_diag(y, x, align='LEFT_RIGHT', k=(0, 1)) z <tf.Tensor: shape=(4, 4), dtype=float32, numpy= array([[-1., 2., 0., 0.], [ 0., -2., 3., 0.], [ 0., 0., -3., 4.], [ 0., 0., -0., -4.]], dtype=float32)> soln = tf.linalg.banded_triangular_solve(x, tf.ones([4, 1]), lower=False) soln <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[-4. ], [-1.5 ], [-0.6666667], [-0.25 ]], dtype=float32)> are_equal = (soln == tf.linalg.triangular_solve( z, tf.ones([4, 1]), lower=False)) tf.reduce_all(are_equal).numpy() True
Args | |
---|---|
bands | A Tensor describing the bands of the left hand side, with shape [..., K, M] . The K rows correspond to the diagonal to the K - 1 -th diagonal (the diagonal is the top row) when lower is True and otherwise the K - 1 -th superdiagonal to the diagonal (the diagonal is the bottom row) when lower is False . The bands are stored with 'LEFT_RIGHT' alignment, where the superdiagonals are padded on the right and subdiagonals are padded on the left. This is the alignment cuSPARSE uses. See tf.linalg.set_diag for more details. |
rhs | A Tensor of shape [..., M] or [..., M, N] and with the same dtype as diagonals . Note that if the shape of rhs and/or diags isn't known statically, rhs will be treated as a matrix rather than a vector. |
lower | An optional bool . Defaults to True . Boolean indicating whether bands represents a lower or upper triangular matrix. |
adjoint | An optional bool . Defaults to False . Boolean indicating whether to solve with the matrix's block-wise adjoint. |
name | A name to give this Op (optional). |
Returns | |
---|---|
A Tensor of shape [..., M] or [..., M, N] containing the solutions. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/linalg/banded_triangular_solve