tf.math.reduce_max
View source on GitHub |
Computes the maximum of elements across dimensions of a tensor.
tf.math.reduce_max( input_tensor, axis=None, keepdims=False, name=None )
Reduces input_tensor
along the dimensions given in axis
. Unless keepdims
is true, the rank of the tensor is reduced by 1 for each of the entries in axis
, which must be unique. If keepdims
is true, the reduced dimensions are retained with length 1.
If axis
is None, all dimensions are reduced, and a tensor with a single element is returned.
Usage example:
x = tf.constant([5, 1, 2, 4]) print(tf.reduce_max(x)) tf.Tensor(5, shape=(), dtype=int32) x = tf.constant([-5, -1, -2, -4]) print(tf.reduce_max(x)) tf.Tensor(-1, shape=(), dtype=int32) x = tf.constant([4, float('nan')]) print(tf.reduce_max(x)) tf.Tensor(nan, shape=(), dtype=float32) x = tf.constant([float('nan'), float('nan')]) print(tf.reduce_max(x)) tf.Tensor(nan, shape=(), dtype=float32) x = tf.constant([float('-inf'), float('inf')]) print(tf.reduce_max(x)) tf.Tensor(inf, shape=(), dtype=float32)
See the numpy docs for np.amax
and np.nanmax
behavior.
Args | |
---|---|
input_tensor | The tensor to reduce. Should have real numeric type. |
axis | The dimensions to reduce. If None (the default), reduces all dimensions. Must be in the range [-rank(input_tensor), rank(input_tensor)) . |
keepdims | If true, retains reduced dimensions with length 1. |
name | A name for the operation (optional). |
Returns | |
---|---|
The reduced tensor. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/math/reduce_max