tf.keras.layers.Conv2DTranspose
View source on GitHub |
Transposed convolution layer (sometimes called Deconvolution).
Inherits From: Conv2D
, Layer
, Module
tf.keras.layers.Conv2DTranspose( filters, kernel_size, strides=(1, 1), padding='valid', output_padding=None, data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs )
The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution.
When using this layer as the first layer in a model, provide the keyword argument input_shape
(tuple of integers, does not include the sample axis), e.g. input_shape=(128, 128, 3)
for 128x128 RGB pictures in data_format="channels_last"
.
Arguments | |
---|---|
filters | Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution). |
kernel_size | An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. |
strides | An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1. |
padding | one of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. |
output_padding | An integer or tuple/list of 2 integers, specifying the amount of padding along the height and width of the output tensor. Can be a single integer to specify the same value for all spatial dimensions. The amount of output padding along a given dimension must be lower than the stride along that same dimension. If set to None (default), the output shape is inferred. |
data_format | A string, one of channels_last (default) or channels_first . The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width) . It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json . If you never set it, then it will be "channels_last". |
dilation_rate | an integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1. |
activation | Activation function to use. If you don't specify anything, no activation is applied ( see keras.activations ). |
use_bias | Boolean, whether the layer uses a bias vector. |
kernel_initializer | Initializer for the kernel weights matrix ( see keras.initializers ). |
bias_initializer | Initializer for the bias vector ( see keras.initializers ). |
kernel_regularizer | Regularizer function applied to the kernel weights matrix (see keras.regularizers ). |
bias_regularizer | Regularizer function applied to the bias vector ( see keras.regularizers ). |
activity_regularizer | Regularizer function applied to the output of the layer (its "activation") (see keras.regularizers ). |
kernel_constraint | Constraint function applied to the kernel matrix ( see keras.constraints ). |
bias_constraint | Constraint function applied to the bias vector ( see keras.constraints ). |
Input shape:
4D tensor with shape: (batch_size, channels, rows, cols)
if data_format='channels_first' or 4D tensor with shape: (batch_size, rows, cols, channels)
if data_format='channels_last'.
Output shape:
4D tensor with shape: (batch_size, filters, new_rows, new_cols)
if data_format='channels_first' or 4D tensor with shape: (batch_size, new_rows, new_cols, filters)
if data_format='channels_last'. rows
and cols
values might have changed due to padding. If output_padding
is specified:
new_rows = ((rows - 1) * strides[0] + kernel_size[0] - 2 * padding[0] + output_padding[0]) new_cols = ((cols - 1) * strides[1] + kernel_size[1] - 2 * padding[1] + output_padding[1])
Returns | |
---|---|
A tensor of rank 4 representing activation(conv2dtranspose(inputs, kernel) + bias) . |
Raises | |
---|---|
ValueError | if padding is "causal". |
ValueError | when both strides > 1 and dilation_rate > 1. |
References:
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/layers/Conv2DTranspose