tf.keras.activations.selu
View source on GitHub |
Scaled Exponential Linear Unit (SELU).
tf.keras.activations.selu( x )
The Scaled Exponential Linear Unit (SELU) activation function is defined as:
if x > 0: return scale * x
if x < 0: return scale * alpha * (exp(x) - 1)
where alpha
and scale
are pre-defined constants (alpha=1.67326324
and scale=1.05070098
).
Basically, the SELU activation function multiplies scale
(> 1) with the output of the tf.keras.activations.elu
function to ensure a slope larger than one for positive inputs.
The values of alpha
and scale
are chosen so that the mean and variance of the inputs are preserved between two consecutive layers as long as the weights are initialized correctly (see tf.keras.initializers.LecunNormal
initializer) and the number of input units is "large enough" (see reference paper for more information).
Example Usage:
num_classes = 10 # 10-class problem model = tf.keras.Sequential() model.add(tf.keras.layers.Dense(64, kernel_initializer='lecun_normal', activation='selu')) model.add(tf.keras.layers.Dense(32, kernel_initializer='lecun_normal', activation='selu')) model.add(tf.keras.layers.Dense(16, kernel_initializer='lecun_normal', activation='selu')) model.add(tf.keras.layers.Dense(num_classes, activation='softmax'))
Arguments | |
---|---|
x | A tensor or variable to compute the activation function for. |
Returns | |
---|---|
The scaled exponential unit activation: scale * elu(x, alpha) . |
Notes:
- To be used together with the
tf.keras.initializers.LecunNormal
initializer. - To be used together with the dropout variant
tf.keras.layers.AlphaDropout
(not regular dropout).
References:
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/activations/selu