tf.experimental.Optional
Represents a value that may or may not be present.
A tf.experimental.Optional
can represent the result of an operation that may fail as a value, rather than raising an exception and halting execution. For example, tf.data.Iterator.get_next_as_optional()
returns a tf.experimental.Optional
that either contains the next element of an iterator if one exists, or an "empty" value that indicates the end of the sequence has been reached.
tf.experimental.Optional
can only be used with values that are convertible to tf.Tensor
or tf.CompositeTensor
.
One can create a tf.experimental.Optional
from a value using the from_value()
method:
optional = tf.experimental.Optional.from_value(42) print(optional.has_value()) tf.Tensor(True, shape=(), dtype=bool) print(optional.get_value()) tf.Tensor(42, shape=(), dtype=int32)
or without a value using the empty()
method:
optional = tf.experimental.Optional.empty( tf.TensorSpec(shape=(), dtype=tf.int32, name=None)) print(optional.has_value()) tf.Tensor(False, shape=(), dtype=bool)
Attributes | |
---|---|
element_spec | The type specification of an element of this optional. optional = tf.experimental.Optional.from_value(42) print(optional.element_spec) tf.TensorSpec(shape=(), dtype=tf.int32, name=None) |
Methods
empty
@staticmethod empty( element_spec )
Returns an Optional
that has no value.
Note: This method takes an argument that defines the structure of the value that would be contained in the returned Optional
if it had a value.
optional = tf.experimental.Optional.empty( tf.TensorSpec(shape=(), dtype=tf.int32, name=None)) print(optional.has_value()) tf.Tensor(False, shape=(), dtype=bool)
Args | |
---|---|
element_spec | A nested structure of tf.TypeSpec objects matching the structure of an element of this optional. |
Returns | |
---|---|
A tf.experimental.Optional with no value. |
from_value
@staticmethod from_value( value )
Returns a tf.experimental.Optional
that wraps the given value.
optional = tf.experimental.Optional.from_value(42) print(optional.has_value()) tf.Tensor(True, shape=(), dtype=bool) print(optional.get_value()) tf.Tensor(42, shape=(), dtype=int32)
Args | |
---|---|
value | A value to wrap. The value must be convertible to tf.Tensor or tf.CompositeTensor . |
Returns | |
---|---|
A tf.experimental.Optional that wraps value . |
get_value
@abc.abstractmethod get_value( name=None )
Returns the value wrapped by this optional.
If this optional does not have a value (i.e. self.has_value()
evaluates to False
), this operation will raise tf.errors.InvalidArgumentError
at runtime.
optional = tf.experimental.Optional.from_value(42) print(optional.get_value()) tf.Tensor(42, shape=(), dtype=int32)
Args | |
---|---|
name | (Optional.) A name for the created operation. |
Returns | |
---|---|
The wrapped value. |
has_value
@abc.abstractmethod has_value( name=None )
Returns a tensor that evaluates to True
if this optional has a value.
optional = tf.experimental.Optional.from_value(42) print(optional.has_value()) tf.Tensor(True, shape=(), dtype=bool)
Args | |
---|---|
name | (Optional.) A name for the created operation. |
Returns | |
---|---|
A scalar tf.Tensor of type tf.bool . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/experimental/Optional