tf.raw_ops.SparseApplyFtrl
Update relevant entries in '*var' according to the Ftrl-proximal scheme.
tf.raw_ops.SparseApplyFtrl(
var, accum, linear, grad, indices, lr, l1, l2, lr_power, use_locking=False,
multiply_linear_by_lr=False, name=None
)
That is for rows we have grad for, we update var, accum and linear as follows:
$$accum_new = accum + grad * grad$$
$$linear += grad + (accum_{new}^{-lr_{power} } - accum^{-lr_{power} } / lr * var$$
$$quadratic = 1.0 / (accum_{new}^{lr_{power} } * lr) + 2 * l2$$
$$var = (sign(linear) * l1 - linear) / quadratic\ if\ |linear| > l1\ else\ 0.0$$
$$accum = accum_{new}$$
| Args | |
|---|---|
var | A mutable Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, complex64, int64, qint8, quint8, qint32, bfloat16, uint16, complex128, half, uint32, uint64. Should be from a Variable(). |
accum | A mutable Tensor. Must have the same type as var. Should be from a Variable(). |
linear | A mutable Tensor. Must have the same type as var. Should be from a Variable(). |
grad | A Tensor. Must have the same type as var. The gradient. |
indices | A Tensor. Must be one of the following types: int32, int64. A vector of indices into the first dimension of var and accum. |
lr | A Tensor. Must have the same type as var. Scaling factor. Must be a scalar. |
l1 | A Tensor. Must have the same type as var. L1 regularization. Must be a scalar. |
l2 | A Tensor. Must have the same type as var. L2 regularization. Must be a scalar. |
lr_power | A Tensor. Must have the same type as var. Scaling factor. Must be a scalar. |
use_locking | An optional bool. Defaults to False. If True, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. |
multiply_linear_by_lr | An optional bool. Defaults to False. |
name | A name for the operation (optional). |
| Returns | |
|---|---|
A mutable Tensor. Has the same type as var. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/raw_ops/SparseApplyFtrl