tf.raw_ops.MatrixTriangularSolve
Solves systems of linear equations with upper or lower triangular matrices by backsubstitution.
tf.raw_ops.MatrixTriangularSolve(
    matrix, rhs, lower=True, adjoint=False, name=None
)
  matrix is a tensor of shape [..., M, M] whose inner-most 2 dimensions form square matrices. If lower is True then the strictly upper triangular part of each inner-most matrix is assumed to be zero and not accessed. If lower is False then the strictly lower triangular part of each inner-most matrix is assumed to be zero and not accessed. rhs is a tensor of shape [..., M, N].
The output is a tensor of shape [..., M, N]. If adjoint is True then the innermost matrices in output satisfy matrix equations matrix[..., :, :] * output[..., :, :] = rhs[..., :, :]. If adjoint is False then the strictly then the innermost matrices in output satisfy matrix equations adjoint(matrix[..., i, k]) * output[..., k, j] = rhs[..., i, j].
Note, the batch shapes for the inputs only need to broadcast.
Example:
a = tf.constant([[3,  0,  0,  0],
                 [2,  1,  0,  0],
                 [1,  0,  1,  0],
                 [1,  1,  1,  1]], dtype=tf.float32)
b = tf.constant([[4],
                 [2],
                 [4],
                 [2]], dtype=tf.float32)
x = tf.linalg.triangular_solve(a, b, lower=True)
x
# <tf.Tensor: shape=(4, 1), dtype=float32, numpy=
# array([[ 1.3333334 ],
#        [-0.66666675],
#        [ 2.6666665 ],
#        [-1.3333331 ]], dtype=float32)>
# in python3 one can use `a@x`
tf.matmul(a, x)
# <tf.Tensor: shape=(4, 1), dtype=float32, numpy=
# array([[4.       ],
#        [2.       ],
#        [4.       ],
#        [1.9999999]], dtype=float32)>
  
| Args | |
|---|---|
 matrix  |   A Tensor. Must be one of the following types: float64, float32, half, complex64, complex128. Shape is [..., M, M].  |  
 rhs  |   A Tensor. Must have the same type as matrix. Shape is [..., M, K].  |  
 lower  |   An optional bool. Defaults to True. Boolean indicating whether the innermost matrices in matrix are lower or upper triangular.  |  
 adjoint  |   An optional bool. Defaults to False. Boolean indicating whether to solve with matrix or its (block-wise) adjoint.  |  
 name  |  A name for the operation (optional). | 
| Returns | |
|---|---|
 A Tensor. Has the same type as matrix.  |  
Numpy Compatibility
Equivalent to scipy.linalg.solve_triangular
    © 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/raw_ops/MatrixTriangularSolve