tf.distribute.experimental.partitioners.FixedShardsPartitioner
Partitioner that allocates a fixed number of shards.
Inherits From: Partitioner
tf.distribute.experimental.partitioners.FixedShardsPartitioner( num_shards )
Examples:
# standalone usage: partitioner = FixedShardsPartitioner(num_shards=2) partitions = partitioner(tf.TensorShape([10, 3]), tf.float32) [2, 1] # use in ParameterServerStrategy # strategy = tf.distribute.experimental.ParameterServerStrategy( # cluster_resolver=cluster_resolver, variable_partitioner=partitioner)
Args | |
---|---|
num_shards | int , number of shards to partition. |
Methods
__call__
__call__( shape, dtype, axis=0 )
Partitions the given shape
and returns the partition results.
Examples of a partitioner that allocates a fixed number of shards:
partitioner = FixedShardsPartitioner(num_shards=2) partitions = partitioner(tf.TensorShape([10, 3], tf.float32), axis=0) print(partitions) # [2, 0]
Args | |
---|---|
shape | a tf.TensorShape , the shape to partition. |
dtype | a tf.dtypes.Dtype indicating the type of the partition value. |
axis | The axis to partition along. Default: outermost axis. |
Returns | |
---|---|
A list of integers representing the number of partitions on each axis, where i-th value correponds to i-th axis. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/distribute/experimental/partitioners/FixedShardsPartitioner