tf.feature_column.numeric_column
Represents real valued or numerical features.
tf.feature_column.numeric_column(
key, shape=(1,), default_value=None, dtype=tf.dtypes.float32, normalizer_fn=None
)
Example:
price = numeric_column('price')
columns = [price, ...]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
# or
bucketized_price = bucketized_column(price, boundaries=[...])
columns = [bucketized_price, ...]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
Args |
key | A unique string identifying the input feature. It is used as the column name and the dictionary key for feature parsing configs, feature Tensor objects, and feature columns. |
shape | An iterable of integers specifies the shape of the Tensor . An integer can be given which means a single dimension Tensor with given width. The Tensor representing the column will have the shape of [batch_size] + shape . |
default_value | A single value compatible with dtype or an iterable of values compatible with dtype which the column takes on during tf.Example parsing if data is missing. A default value of None will cause tf.io.parse_example to fail if an example does not contain this column. If a single value is provided, the same value will be applied as the default value for every item. If an iterable of values is provided, the shape of the default_value should be equal to the given shape . |
dtype | defines the type of values. Default value is tf.float32 . Must be a non-quantized, real integer or floating point type. |
normalizer_fn | If not None , a function that can be used to normalize the value of the tensor after default_value is applied for parsing. Normalizer function takes the input Tensor as its argument, and returns the output Tensor . (e.g. lambda x: (x - 3.0) / 4.2). Please note that even though the most common use case of this function is normalization, it can be used for any kind of Tensorflow transformations. |
Raises |
TypeError | if any dimension in shape is not an int |
ValueError | if any dimension in shape is not a positive integer |
TypeError | if default_value is an iterable but not compatible with shape |
TypeError | if default_value is not compatible with dtype . |
ValueError | if dtype is not convertible to tf.float32 . |