tf.keras.metrics.sparse_top_k_categorical_accuracy
Computes how often integer targets are in the top K
predictions.
tf.keras.metrics.sparse_top_k_categorical_accuracy(
y_true, y_pred, k=5
)
Standalone usage:
y_true = [2, 1]
y_pred = [[0.1, 0.9, 0.8], [0.05, 0.95, 0]]
m = tf.keras.metrics.sparse_top_k_categorical_accuracy(
y_true, y_pred, k=3)
assert m.shape == (2,)
m.numpy()
array([1., 1.], dtype=float32)
Args |
y_true | tensor of true targets. |
y_pred | tensor of predicted targets. |
k | (Optional) Number of top elements to look at for computing accuracy. Defaults to 5. |
Returns |
Sparse top K categorical accuracy value. |