tf.keras.activations.gelu
Applies the Gaussian error linear unit (GELU) activation function.
tf.keras.activations.gelu( x, approximate=False )
Gaussian error linear unit (GELU) computes x * P(X <= x)
, where P(X) ~ N(0, 1)
. The (GELU) nonlinearity weights inputs by their value, rather than gates inputs by their sign as in ReLU.
For example:
x = tf.constant([-3.0, -1.0, 0.0, 1.0, 3.0], dtype=tf.float32) y = tf.keras.activations.gelu(x) y.numpy() array([-0.00404951, -0.15865529, 0. , 0.8413447 , 2.9959507 ], dtype=float32) y = tf.keras.activations.gelu(x, approximate=True) y.numpy() array([-0.00363752, -0.15880796, 0. , 0.841192 , 2.9963627 ], dtype=float32)
Arguments | |
---|---|
x | Input tensor. |
approximate | A bool , whether to enable approximation. |
Returns | |
---|---|
The gaussian error linear activation: 0.5 * x * (1 + tanh(sqrt(2 / pi) * (x + 0.044715 * x^3))) if approximate is True or x * P(X <= x) = 0.5 * x * (1 + erf(x / sqrt(2))) , where P(X) ~ N(0, 1) , if approximate is False . |
Reference:
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/activations/gelu