tf.compat.v1.keras.experimental.load_from_saved_model
Loads a keras Model from a SavedModel created by export_saved_model()
.
tf.compat.v1.keras.experimental.load_from_saved_model( saved_model_path, custom_objects=None )
This function reinstantiates model state by:
1) loading model topology from json (this will eventually come from metagraph). 2) loading model weights from checkpoint.
Example:
import tensorflow as tf # Create a tf.keras model. model = tf.keras.Sequential() model.add(tf.keras.layers.Dense(1, input_shape=[10])) model.summary() # Save the tf.keras model in the SavedModel format. path = '/tmp/simple_keras_model' tf.keras.experimental.export_saved_model(model, path) # Load the saved keras model back. new_model = tf.keras.experimental.load_from_saved_model(path) new_model.summary()
Args | |
---|---|
saved_model_path | a string specifying the path to an existing SavedModel. |
custom_objects | Optional dictionary mapping names (strings) to custom classes or functions to be considered during deserialization. |
Returns | |
---|---|
a keras.Model instance. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/compat/v1/keras/experimental/load_from_saved_model