tf.keras.preprocessing.image.NumpyArrayIterator
View source on GitHub |
Iterator yielding data from a Numpy array.
Inherits From: Iterator
, Sequence
tf.keras.preprocessing.image.NumpyArrayIterator( x, y, image_data_generator, batch_size=32, shuffle=False, sample_weight=None, seed=None, data_format=None, save_to_dir=None, save_prefix='', save_format='png', subset=None, dtype=None )
Arguments | |
---|---|
x | Numpy array of input data or tuple. If tuple, the second elements is either another numpy array or a list of numpy arrays, each of which gets passed through as an output without any modifications. |
y | Numpy array of targets data. |
image_data_generator | Instance of ImageDataGenerator to use for random transformations and normalization. |
batch_size | Integer, size of a batch. |
shuffle | Boolean, whether to shuffle the data between epochs. |
sample_weight | Numpy array of sample weights. |
seed | Random seed for data shuffling. |
data_format | String, one of channels_first , channels_last . |
save_to_dir | Optional directory where to save the pictures being yielded, in a viewable format. This is useful for visualizing the random transformations being applied, for debugging purposes. |
save_prefix | String prefix to use for saving sample images (if save_to_dir is set). |
save_format | Format to use for saving sample images (if save_to_dir is set). |
subset | Subset of data ("training" or "validation" ) if validation_split is set in ImageDataGenerator. |
dtype | Dtype to use for the generated arrays. |
Methods
next
next()
For python 2.x.
Returns | |
---|---|
The next batch. |
on_epoch_end
on_epoch_end()
reset
reset()
__getitem__
__getitem__( idx )
__iter__
__iter__()
__len__
__len__()
Class Variables | |
---|---|
white_list_formats |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/preprocessing/image/NumpyArrayIterator