tf.executing_eagerly
| View source on GitHub |
Checks whether the current thread has eager execution enabled.
tf.executing_eagerly()
Eager execution is enabled by default and this API returns True in most of cases. However, this API might return False in the following use cases.
- Executing inside
tf.function, unless undertf.init_scopeortf.config.run_functions_eagerly(True)is previously called. - Executing inside a transformation function for
tf.dataset. -
tf.compat.v1.disable_eager_execution()is called.
General case:
print(tf.executing_eagerly()) True
Inside tf.function:
@tf.function
def fn():
with tf.init_scope():
print(tf.executing_eagerly())
print(tf.executing_eagerly())
fn()
True
False
Inside tf.function after tf.config.run_functions_eagerly(True) is called:
tf.config.run_functions_eagerly(True)
@tf.function
def fn():
with tf.init_scope():
print(tf.executing_eagerly())
print(tf.executing_eagerly())
fn()
True
True
tf.config.run_functions_eagerly(False)
Inside a transformation function for tf.dataset:
def data_fn(x): print(tf.executing_eagerly()) return x dataset = tf.data.Dataset.range(100) dataset = dataset.map(data_fn) False
| Returns | |
|---|---|
True if the current thread has eager execution enabled. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/executing_eagerly