tf.nn.max_pool
| View source on GitHub |
Performs the max pooling on the input.
tf.nn.max_pool(
input, ksize, strides, padding, data_format=None, name=None
)
| Args | ||
|---|---|---|
input | Tensor of rank N+2, of shape [batch_size] + input_spatial_shape + [num_channels] if data_format does not start with "NC" (default), or [batch_size, num_channels] + input_spatial_shape if data_format starts with "NC". Pooling happens over the spatial dimensions only. | |
ksize | An int or list of ints that has length 1, N or N+2. The size of the window for each dimension of the input tensor. | |
strides | An int or list of ints that has length 1, N or N+2. The stride of the sliding window for each dimension of the input tensor. | |
padding | Either the string"SAME"or"VALID"indicating the type of padding algorithm to use, or a list indicating the explicit paddings at the start and end of each dimension. When explicit padding is used and data_format is"NHWC", this should be in the form[[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]]. When explicit padding used and data_format is"NCHW", this should be in the form[[0, 0], [0, 0], [pad_top, pad_bottom], [pad_left, pad_right]]. When using explicit padding, the size of the paddings cannot be greater than the sliding window size. </td> </tr><tr> <td>data_format</td> <td> A string. Specifies the channel dimension. For N=1 it can be either "NWC" (default) or "NCW", for N=2 it can be either "NHWC" (default) or "NCHW" and for N=3 either "NDHWC" (default) or "NCDHW". </td> </tr><tr> <td>name` | Optional name for the operation. |
| Returns | |
|---|---|
A Tensor of format specified by data_format. The max pooled output tensor. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/nn/max_pool