tf.compat.v1.flags.mark_flag_as_required
Ensures that flag is not None during program execution.
tf.compat.v1.flags.mark_flag_as_required( flag_name, flag_values=_flagvalues.FLAGS )
Registers a flag validator, which will follow usual validator rules. Important note: validator will pass for any non-None value, such as False, 0 (zero), '' (empty string) and so on.
If your module might be imported by others, and you only wish to make the flag required when the module is directly executed, call this method like this:
if name == 'main': flags.mark_flag_as_required('your_flag_name') app.run()
Args | |
---|---|
flag_name | str, name of the flag |
flag_values | flags.FlagValues, optional FlagValues instance where the flag is defined. |
Raises | |
---|---|
AttributeError | Raised when flag_name is not registered as a valid flag name. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/compat/v1/flags/mark_flag_as_required