tf.raw_ops.ResourceApplyAdam
Update '*var' according to the Adam algorithm.
tf.raw_ops.ResourceApplyAdam( var, m, v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, use_locking=False, use_nesterov=False, name=None )
$$\text{lr}_t := \mathrm{learning_rate} * \sqrt{1 - \beta_2^t} / (1 - \beta_1^t)$$
$$m_t := \beta_1 * m_{t-1} + (1 - \beta_1) * g$$
$$v_t := \beta_2 * v_{t-1} + (1 - \beta_2) * g * g$$
$$\text{variable} := \text{variable} - \text{lr}_t * m_t / (\sqrt{v_t} + \epsilon)$$
Args | |
---|---|
var | A Tensor of type resource . Should be from a Variable(). |
m | A Tensor of type resource . Should be from a Variable(). |
v | A Tensor of type resource . Should be from a Variable(). |
beta1_power | A Tensor . Must be one of the following types: float32 , float64 , int32 , uint8 , int16 , int8 , complex64 , int64 , qint8 , quint8 , qint32 , bfloat16 , uint16 , complex128 , half , uint32 , uint64 . Must be a scalar. |
beta2_power | A Tensor . Must have the same type as beta1_power . Must be a scalar. |
lr | A Tensor . Must have the same type as beta1_power . Scaling factor. Must be a scalar. |
beta1 | A Tensor . Must have the same type as beta1_power . Momentum factor. Must be a scalar. |
beta2 | A Tensor . Must have the same type as beta1_power . Momentum factor. Must be a scalar. |
epsilon | A Tensor . Must have the same type as beta1_power . Ridge term. Must be a scalar. |
grad | A Tensor . Must have the same type as beta1_power . The gradient. |
use_locking | An optional bool . Defaults to False . If True , updating of the var, m, and v tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. |
use_nesterov | An optional bool . Defaults to False . If True , uses the nesterov update. |
name | A name for the operation (optional). |
Returns | |
---|---|
The created Operation. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/raw_ops/ResourceApplyAdam