tf.data.experimental.load
Loads a previously saved dataset.
tf.data.experimental.load( path, element_spec, compression=None, reader_func=None )
Example usage:
import tempfile path = os.path.join(tempfile.gettempdir(), "saved_data") # Save a dataset dataset = tf.data.Dataset.range(2) tf.data.experimental.save(dataset, path) new_dataset = tf.data.experimental.load(path, tf.TensorSpec(shape=(), dtype=tf.int64)) for elem in new_dataset: print(elem) tf.Tensor(0, shape=(), dtype=int64) tf.Tensor(1, shape=(), dtype=int64)
Note that to load a previously saved dataset, you need to specify element_spec
-- a type signature of the elements of the saved dataset, which can be obtained via tf.data.Dataset.element_spec
. This requirement exists so that shape inference of the loaded dataset does not need to perform I/O.
If the default option of sharding the saved dataset was used, the element order of the saved dataset will be preserved when loading it.
The reader_func
argument can be used to specify a custom order in which elements should be loaded from the individual shards. The reader_func
is expected to take a single argument -- a dataset of datasets, each containing elements of one of the shards -- and return a dataset of elements. For example, the order of shards can be shuffled when loading them as follows:
def custom_reader_func(datasets): datasets = datasets.shuffle(NUM_SHARDS) return datasets.interleave(lambda x: x, num_parallel_calls=AUTOTUNE) dataset = tf.data.experimental.load( path="/path/to/data", ..., reader_func=custom_reader_func)
Args | |
---|---|
path | Required. A path pointing to a previously saved dataset. |
element_spec | Required. A nested structure of tf.TypeSpec objects matching the structure of an element of the saved dataset and specifying the type of individual element components. |
compression | Optional. The algorithm to use to decompress the data when reading it. Supported options are GZIP and NONE . Defaults to NONE . |
reader_func | Optional. A function to control how to read data from shards. If present, the function will be traced and executed as graph computation. |
Returns | |
---|---|
A tf.data.Dataset instance. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/data/experimental/load