tf.keras.losses.BinaryCrossentropy
View source on GitHub |
Computes the cross-entropy loss between true labels and predicted labels.
Inherits From: Loss
tf.keras.losses.BinaryCrossentropy( from_logits=False, label_smoothing=0, reduction=losses_utils.ReductionV2.AUTO, name='binary_crossentropy' )
Use this cross-entropy loss when there are only two label classes (assumed to be 0 and 1). For each example, there should be a single floating-point value per prediction.
In the snippet below, each of the four examples has only a single floating-pointing value, and both y_pred
and y_true
have the shape [batch_size]
.
Standalone usage:
y_true = [[0., 1.], [0., 0.]] y_pred = [[0.6, 0.4], [0.4, 0.6]] # Using 'auto'/'sum_over_batch_size' reduction type. bce = tf.keras.losses.BinaryCrossentropy() bce(y_true, y_pred).numpy() 0.815
# Calling with 'sample_weight'. bce(y_true, y_pred, sample_weight=[1, 0]).numpy() 0.458
# Using 'sum' reduction type. bce = tf.keras.losses.BinaryCrossentropy( reduction=tf.keras.losses.Reduction.SUM) bce(y_true, y_pred).numpy() 1.630
# Using 'none' reduction type. bce = tf.keras.losses.BinaryCrossentropy( reduction=tf.keras.losses.Reduction.NONE) bce(y_true, y_pred).numpy() array([0.916 , 0.714], dtype=float32)
Usage with the tf.keras
API:
model.compile(optimizer='sgd', loss=tf.keras.losses.BinaryCrossentropy())
Args | |
---|---|
from_logits | Whether to interpret y_pred as a tensor of logit values. By default, we assume that y_pred contains probabilities (i.e., values in [0, 1]). **Note - Using from_logits=True may be more numerically stable. |
label_smoothing | Float in [0, 1]. When 0, no smoothing occurs. When > 0, we compute the loss between the predicted labels and a smoothed version of the true labels, where the smoothing squeezes the labels towards 0.5. Larger values of label_smoothing correspond to heavier smoothing. |
reduction | (Optional) Type of tf.keras.losses.Reduction to apply to loss. Default value is AUTO . AUTO indicates that the reduction option will be determined by the usage context. For almost all cases this defaults to SUM_OVER_BATCH_SIZE . When used with tf.distribute.Strategy , outside of built-in training loops such as tf.keras compile and fit , using AUTO or SUM_OVER_BATCH_SIZE will raise an error. Please see this custom training tutorial for more details. |
name | (Optional) Name for the op. Defaults to 'binary_crossentropy'. |
Methods
from_config
@classmethod from_config( config )
Instantiates a Loss
from its config (output of get_config()
).
Args | |
---|---|
config | Output of get_config() . |
Returns | |
---|---|
A Loss instance. |
get_config
get_config()
Returns the config dictionary for a Loss
instance.
__call__
__call__( y_true, y_pred, sample_weight=None )
Invokes the Loss
instance.
Args | |
---|---|
y_true | Ground truth values. shape = [batch_size, d0, .. dN] , except sparse loss functions such as sparse categorical crossentropy where shape = [batch_size, d0, .. dN-1] |
y_pred | The predicted values. shape = [batch_size, d0, .. dN] |
sample_weight | Optional sample_weight acts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. If sample_weight is a tensor of size [batch_size] , then the total loss for each sample of the batch is rescaled by the corresponding element in the sample_weight vector. If the shape of sample_weight is [batch_size, d0, .. dN-1] (or can be broadcasted to this shape), then each loss element of y_pred is scaled by the corresponding value of sample_weight . (Note ondN-1 : all loss functions reduce by 1 dimension, usually axis=-1.) |
Returns | |
---|---|
Weighted loss float Tensor . If reduction is NONE , this has shape [batch_size, d0, .. dN-1] ; otherwise, it is scalar. (Note dN-1 because all loss functions reduce by 1 dimension, usually axis=-1.) |
Raises | |
---|---|
ValueError | If the shape of sample_weight is invalid. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/losses/BinaryCrossentropy