tf.data.experimental.service.DispatchServer
An in-process tf.data service dispatch server.
tf.data.experimental.service.DispatchServer( config=None, start=True )
A tf.data.experimental.service.DispatchServer
coordinates a cluster of tf.data.experimental.service.WorkerServer
s. When the workers start, they register themselves with the dispatcher.
dispatcher = tf.data.experimental.service.DispatchServer() dispatcher_address = dispatcher.target.split("://")[1] worker = tf.data.experimental.service.WorkerServer(WorkerConfig( dispatcher_address=dispatcher_address)) dataset = tf.data.Dataset.range(10) dataset = dataset.apply(tf.data.experimental.service.distribute( processing_mode="parallel_epochs", service=dispatcher.target)) print(list(dataset.as_numpy_iterator())) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
When starting a dedicated tf.data dispatch process, use join() to block indefinitely after starting up the server.
dispatcher = tf.data.experimental.service.DispatchServer( tf.data.experimental.service.DispatcherConfig(port=5050)) dispatcher.join()
To start a DispatchServer
in fault-tolerant mode, set work_dir
and fault_tolerant_mode
like below:
dispatcher = tf.data.experimental.service.DispatchServer( tf.data.experimental.service.DispatcherConfig( port=5050, work_dir="gs://my-bucket/dispatcher/work_dir", fault_tolerant_mode=True))
Args | |
---|---|
config | (Optional.) A tf.data.experimental.service.DispatcherConfig configration. If None , the dispatcher will use default configuration values. |
start | (Optional.) Boolean, indicating whether to start the server after creating it. Defaults to True. |
Attributes | |
---|---|
target | Returns a target that can be used to connect to the server. dispatcher = tf.data.experimental.service.DispatchServer() dataset = tf.data.Dataset.range(10) dataset = dataset.apply(tf.data.experimental.service.distribute( processing_mode="parallel_epochs", service=dispatcher.target)) The returned string will be in the form protocol://address, e.g. "grpc://localhost:5050". |
Methods
join
join()
Blocks until the server has shut down.
This is useful when starting a dedicated dispatch process.
dispatcher = tf.data.experimental.service.DispatchServer( tf.data.experimental.service.DispatcherConfig(port=5050)) dispatcher.join()
Raises | |
---|---|
tf.errors.OpError | Or one of its subclasses if an error occurs while joining the server. |
start
start()
Starts this server.
dispatcher = tf.data.experimental.service.DispatchServer(start=False) dispatcher.start()
Raises | |
---|---|
tf.errors.OpError | Or one of its subclasses if an error occurs while starting the server. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/data/experimental/service/DispatchServer