Reshaping and Pivot Tables
Reshaping by pivoting DataFrame objects
Data is often stored in so-called “stacked” or “record” format:
In [1]: df Out[1]: date variable value 0 2000-01-03 A 0.469112 1 2000-01-04 A -0.282863 2 2000-01-05 A -1.509059 3 2000-01-03 B -1.135632 4 2000-01-04 B 1.212112 5 2000-01-05 B -0.173215 6 2000-01-03 C 0.119209 7 2000-01-04 C -1.044236 8 2000-01-05 C -0.861849 9 2000-01-03 D -2.104569 10 2000-01-04 D -0.494929 11 2000-01-05 D 1.071804
For the curious here is how the above DataFrame
was created:
import pandas.util.testing as tm tm.N = 3 def unpivot(frame): N, K = frame.shape data = {'value': frame.to_numpy().ravel('F'), 'variable': np.asarray(frame.columns).repeat(N), 'date': np.tile(np.asarray(frame.index), K)} return pd.DataFrame(data, columns=['date', 'variable', 'value']) df = unpivot(tm.makeTimeDataFrame())
To select out everything for variable A
we could do:
In [2]: df[df['variable'] == 'A'] Out[2]: date variable value 0 2000-01-03 A 0.469112 1 2000-01-04 A -0.282863 2 2000-01-05 A -1.509059
But suppose we wish to do time series operations with the variables. A better representation would be where the columns
are the unique variables and an index
of dates identifies individual observations. To reshape the data into this form, we use the DataFrame.pivot()
method (also implemented as a top level function pivot()
):
In [3]: df.pivot(index='date', columns='variable', values='value') Out[3]: variable A B C D date 2000-01-03 0.469112 -1.135632 0.119209 -2.104569 2000-01-04 -0.282863 1.212112 -1.044236 -0.494929 2000-01-05 -1.509059 -0.173215 -0.861849 1.071804
If the values
argument is omitted, and the input DataFrame
has more than one column of values which are not used as column or index inputs to pivot
, then the resulting “pivoted” DataFrame
will have hierarchical columns whose topmost level indicates the respective value column:
In [4]: df['value2'] = df['value'] * 2 In [5]: pivoted = df.pivot(index='date', columns='variable') In [6]: pivoted Out[6]: value value2 variable A B C D A B C D date 2000-01-03 0.469112 -1.135632 0.119209 -2.104569 0.938225 -2.271265 0.238417 -4.209138 2000-01-04 -0.282863 1.212112 -1.044236 -0.494929 -0.565727 2.424224 -2.088472 -0.989859 2000-01-05 -1.509059 -0.173215 -0.861849 1.071804 -3.018117 -0.346429 -1.723698 2.143608
You can then select subsets from the pivoted DataFrame
:
In [7]: pivoted['value2'] Out[7]: variable A B C D date 2000-01-03 0.938225 -2.271265 0.238417 -4.209138 2000-01-04 -0.565727 2.424224 -2.088472 -0.989859 2000-01-05 -3.018117 -0.346429 -1.723698 2.143608
Note that this returns a view on the underlying data in the case where the data are homogeneously-typed.
Note
pivot()
will error with a ValueError: Index contains duplicate
entries, cannot reshape
if the index/column pair is not unique. In this case, consider using pivot_table()
which is a generalization of pivot that can handle duplicate values for one index/column pair.
Reshaping by stacking and unstacking
Closely related to the pivot()
method are the related stack()
and unstack()
methods available on Series
and DataFrame
. These methods are designed to work together with MultiIndex
objects (see the section on hierarchical indexing). Here are essentially what these methods do:
-
stack
: “pivot” a level of the (possibly hierarchical) column labels, returning aDataFrame
with an index with a new inner-most level of row labels. -
unstack
: (inverse operation ofstack
) “pivot” a level of the (possibly hierarchical) row index to the column axis, producing a reshapedDataFrame
with a new inner-most level of column labels.
The clearest way to explain is by example. Let’s take a prior example data set from the hierarchical indexing section:
In [8]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz', ...: 'foo', 'foo', 'qux', 'qux'], ...: ['one', 'two', 'one', 'two', ...: 'one', 'two', 'one', 'two']])) ...: In [9]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) In [10]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B']) In [11]: df2 = df[:4] In [12]: df2 Out[12]: A B first second bar one 0.721555 -0.706771 two -1.039575 0.271860 baz one -0.424972 0.567020 two 0.276232 -1.087401
The stack
function “compresses” a level in the DataFrame
’s columns to produce either:
- A
Series
, in the case of a simple column Index. - A
DataFrame
, in the case of aMultiIndex
in the columns.
If the columns have a MultiIndex
, you can choose which level to stack. The stacked level becomes the new lowest level in a MultiIndex
on the columns:
In [13]: stacked = df2.stack() In [14]: stacked Out[14]: first second bar one A 0.721555 B -0.706771 two A -1.039575 B 0.271860 baz one A -0.424972 B 0.567020 two A 0.276232 B -1.087401 dtype: float64
With a “stacked” DataFrame
or Series
(having a MultiIndex
as the index
), the inverse operation of stack
is unstack
, which by default unstacks the last level:
In [15]: stacked.unstack() Out[15]: A B first second bar one 0.721555 -0.706771 two -1.039575 0.271860 baz one -0.424972 0.567020 two 0.276232 -1.087401 In [16]: stacked.unstack(1)
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/user_guide/reshaping.html