pandas.Series.plot.density
-
Series.plot.density(bw_method=None, ind=None, **kwds)
[source] -
Generate Kernel Density Estimate plot using Gaussian kernels.
In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density function (PDF) of a random variable. This function uses Gaussian kernels and includes automatic bandwidth determination.
Parameters: -
bw_method : str, scalar or callable, optional
-
The method used to calculate the estimator bandwidth. This can be ‘scott’, ‘silverman’, a scalar constant or a callable. If None (default), ‘scott’ is used. See
scipy.stats.gaussian_kde
for more information. -
ind : NumPy array or integer, optional
-
Evaluation points for the estimated PDF. If None (default), 1000 equally spaced points are used. If
ind
is a NumPy array, the KDE is evaluated at the points passed. Ifind
is an integer,ind
number of equally spaced points are used. -
**kwds : optional
-
Additional keyword arguments are documented in
pandas.Series.plot()
.
Returns: -
axes : matplotlib.axes.Axes or numpy.ndarray of them
See also
-
scipy.stats.gaussian_kde
- Representation of a kernel-density estimate using Gaussian kernels. This is the function used internally to estimate the PDF.
-
DataFrame.plot.kde
- Generate a KDE plot for a DataFrame.
Examples
Given a Series of points randomly sampled from an unknown distribution, estimate its PDF using KDE with automatic bandwidth determination and plot the results, evaluating them at 1000 equally spaced points (default):
>>> s = pd.Series([1, 2, 2.5, 3, 3.5, 4, 5]) >>> ax = s.plot.kde()
A scalar bandwidth can be specified. Using a small bandwidth value can lead to over-fitting, while using a large bandwidth value may result in under-fitting:
>>> ax = s.plot.kde(bw_method=0.3)
>>> ax = s.plot.kde(bw_method=3)
Finally, the
ind
parameter determines the evaluation points for the plot of the estimated PDF:>>> ax = s.plot.kde(ind=[1, 2, 3, 4, 5])
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.Series.plot.density.html